cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 49 results. Next

A282242 The smallest square referenced in A049094 (Numbers n such that 2^n - 1 is divisible by a square > 1).

Original entry on oeis.org

9, 9, 9, 25, 49, 9, 9, 9, 25, 9, 9, 9, 9, 49, 9, 9, 9, 25, 9, 9, 9, 25, 9, 49, 9, 121, 9, 9, 9, 9, 289, 9, 25, 9, 49, 9, 961, 9, 25, 9, 9, 9, 9, 9, 49, 9, 9, 25, 9, 9, 9, 25, 9, 9, 49, 9, 9, 9, 9, 529, 9, 25, 9, 9, 289, 49, 9, 25, 9, 9, 9, 9, 9, 961, 9, 49
Offset: 1

Views

Author

Robert Price, Feb 09 2017

Keywords

Crossrefs

A282243 Square root of the smallest square referenced in A049094 (Numbers n such that 2^n - 1 is divisible by a square > 1).

Original entry on oeis.org

3, 3, 3, 5, 7, 3, 3, 3, 5, 3, 3, 3, 3, 7, 3, 3, 3, 5, 3, 3, 3, 5, 3, 7, 3, 11, 3, 3, 3, 3, 17, 3, 5, 3, 7, 3, 31, 3, 5, 3, 3, 3, 3, 3, 7, 3, 3, 5, 3, 3, 3, 5, 3, 3, 7, 3, 3, 3, 3, 23, 3, 5, 3, 3, 17, 7, 3, 5, 3, 3, 3, 3, 3, 31, 3, 7, 3, 5, 3, 3, 3, 5, 3, 3
Offset: 1

Views

Author

Robert Price, Feb 09 2017

Keywords

Crossrefs

A172522 Partial sums of A049094.

Original entry on oeis.org

6, 18, 36, 56, 77, 101, 131, 167, 207, 249, 297, 351, 411, 474, 540, 612, 690, 770, 854, 944, 1040, 1140, 1242, 1347, 1455, 1565, 1679, 1799, 1925, 2057, 2193, 2331, 2471, 2615, 2762, 2912, 3067, 3223, 3383, 3545, 3713, 3887, 4067, 4253, 4442, 4634, 4832
Offset: 1

Views

Author

Jonathan Vos Post, Feb 06 2010

Keywords

Comments

The subsequence of primes in this sequence begins: 101, 131, 167, 3067.

Examples

			a(20) = 6 + 12 + 18 + 20 + 21 + 24 + 30 + 36 + 40 + 42 + 48 + 54 + 60 + 63 + 66 + 72 + 78 + 80 + 84 + 90.
		

Crossrefs

Formula

a(n) = SUM[i=1..n] {i such that 2^i - 1 is divisible by a square}.

Extensions

More terms from R. J. Mathar, Feb 16 2010

A001220 Wieferich primes: primes p such that p^2 divides 2^(p-1) - 1.

Original entry on oeis.org

1093, 3511
Offset: 1

Views

Author

Keywords

Comments

Sequence is believed to be infinite.
Joseph Silverman showed that the abc-conjecture implies that there are infinitely many primes which are not in the sequence. - Benoit Cloitre, Jan 09 2003
Graves and Murty (2013) improved Silverman's result by showing that for any fixed k > 1, the abc-conjecture implies that there are infinitely many primes == 1 (mod k) which are not in the sequence. - Jonathan Sondow, Jan 21 2013
The squares of these numbers are Fermat pseudoprimes to base 2 (A001567) and Catalan pseudoprimes (A163209). - T. D. Noe, May 22 2003
Primes p that divide the numerator of the harmonic number H((p-1)/2); that is, p divides A001008((p-1)/2). - T. D. Noe, Mar 31 2004
In a 1977 paper, Wells Johnson, citing a suggestion from Lawrence Washington, pointed out the repetitions in the binary representations of the numbers which are one less than the two known Wieferich primes; i.e., 1092 = 10001000100 (base 2); 3510 = 110110110110 (base 2). It is perhaps worth remarking that 1092 = 444 (base 16) and 3510 = 6666 (base 8), so that these numbers are small multiples of repunits in the respective bases. Whether this is mathematically significant does not appear to be known. - John Blythe Dobson, Sep 29 2007
A002326((a(n)^2 - 1)/2) = A002326((a(n)-1)/2). - Vladimir Shevelev, Jul 09 2008, Aug 24 2008
It is believed that p^2 does not divide 3^(p-1) - 1 if p = a(n). This is true for n = 1 and 2. See A178815, A178844, A178900, and Ostafe-Shparlinski (2010) Section 1.1. - Jonathan Sondow, Jun 29 2010
These primes also divide the numerator of the harmonic number H(floor((p-1)/4)). - H. Eskandari (hamid.r.eskandari(AT)gmail.com), Sep 28 2010
1093 and 3511 are prime numbers p satisfying congruence 429327^(p-1) == 1 (mod p^2). Why? - Arkadiusz Wesolowski, Apr 07 2011. Such bases are listed in A247208. - Max Alekseyev, Nov 25 2014. See A269798 for all such bases, prime and composite, that are not powers of 2. - Felix Fröhlich, Apr 07 2018
A196202(A049084(a(1))) = A196202(A049084(a(2))) = 1. - Reinhard Zumkeller, Sep 29 2011
If q is prime and q^2 divides a prime-exponent Mersenne number, then q must be a Wieferich prime. Neither of the two known Wieferich primes divide Mersenne numbers. See Will Edgington's Mersenne page in the links below. - Daran Gill, Apr 04 2013
There are no other terms below 4.97*10^17 as established by PrimeGrid (see link below). - Max Alekseyev, Nov 20 2015. The search was done via PrimeGrid's PRPNet and the results were not double-checked. Because of the unreliability of the testing, the search was suspended in May 2017 (cf. Goetz, 2017). - Felix Fröhlich, Apr 01 2018. On Nov 28 2020, PrimeGrid has resumed the search (cf. Reggie, 2020). - Felix Fröhlich, Nov 29 2020. As of Dec 29 2022, PrimeGrid has completed the search to 2^64 (about 1.8 * 10^19) and has no plans to continue further. - Charles R Greathouse IV, Sep 24 2024
Are there other primes q >= p such that q^2 divides 2^(p-1)-1, where p is a prime? - Thomas Ordowski, Nov 22 2014. Any such q must be a Wieferich prime. - Max Alekseyev, Nov 25 2014
Primes p such that p^2 divides 2^r - 1 for some r, 0 < r < p. - Thomas Ordowski, Nov 28 2014, corrected by Max Alekseyev, Nov 28 2014
For some reason, both p=a(1) and p=a(2) also have more bases b with 1 < b < p that make b^(p-1) == 1 (mod p^2) than any smaller prime p; in other words, a(1) and a(2) belong to A248865. - Jeppe Stig Nielsen, Jul 28 2015
Let r_1, r_2, r_3, ..., r_i be the set of roots of the polynomial X^((p-1)/2) - (p-3)! * X^((p-3)/2) - (p-5)! * X^((p-5)/2) - ... - 1. Then p is a Wieferich prime iff p divides sum{k=1, p}(r_k^((p-1)/2)) (see Example 2 in Jakubec, 1994). - Felix Fröhlich, May 27 2016
Arthur Wieferich showed that if p is not a term of this sequence, then the First Case of Fermat's Last Theorem has no solution in x, y and z for prime exponent p (cf. Wieferich, 1909). - Felix Fröhlich, May 27 2016
Let U_n(P, Q) be a Lucas sequence of the first kind, let e be the Legendre symbol (D/p) and let p be a prime not dividing 2QD, where D = P^2 - 4*Q. Then a prime p such that U_(p-e) == 0 (mod p^2) is called a "Lucas-Wieferich prime associated to the pair (P, Q)". Wieferich primes are those Lucas-Wieferich primes that are associated to the pair (3, 2) (cf. McIntosh, Roettger, 2007, p. 2088). - Felix Fröhlich, May 27 2016
Any repeated prime factor of a term of A000215 is a term of this sequence. Thus, if there exist infinitely many Fermat numbers that are not squarefree, then this sequence is infinite, since no two Fermat numbers share a common factor. - Felix Fröhlich, May 27 2016
If the Diophantine equation p^x - 2^y = d has more than one solution in positive integers (x, y), with (p, d) not being one of the pairs (3, 1), (3, -5), (3, -13) or (5, -3), then p is a term of this sequence (cf. Scott, Styer, 2004, Corollary to Theorem 2). - Felix Fröhlich, Jun 18 2016
Odd primes p such that Chi_(D_0)(p) != 1 and Lambda_p(Q(sqrt(D_0))) != 1, where D_0 < 0 is the fundamental discriminant of the imaginary quadratic field Q(sqrt(1-p^2)) and Chi and Lambda are Iwasawa invariants (cf. Byeon, 2006, Proposition 1 (i)). - Felix Fröhlich, Jun 25 2016
If q is an odd prime, k, p are primes with p = 2*k+1, k == 3 (mod 4), p == -1 (mod q) and p =/= -1 (mod q^3) (Jakubec, 1998, Corollary 2 gives p == -5 (mod q) and p =/= -5 (mod q^3)) with the multiplicative order of q modulo k = (k-1)/2 and q dividing the class number of the real cyclotomic field Q(Zeta_p + (Zeta_p)^(-1)), then q is a term of this sequence (cf. Jakubec, 1995, Theorem 1). - Felix Fröhlich, Jun 25 2016
From Felix Fröhlich, Aug 06 2016: (Start)
Primes p such that p-1 is in A240719.
Prime terms of A077816 (cf. Agoh, Dilcher, Skula, 1997, Corollary 5.9).
p = prime(n) is in the sequence iff T(2, n) > 1, where T = A258045.
p = prime(n) is in the sequence iff an integer k exists such that T(n, k) = 2, where T = A258787. (End)
Conjecture: an integer n > 1 such that n^2 divides 2^(n-1)-1 must be a Wieferich prime. - Thomas Ordowski, Dec 21 2016
The above conjecture is equivalent to the statement that no "Wieferich pseudoprimes" (WPSPs) exist. While base-b WPSPs are known to exist for several bases b > 1 other than 2 (see for example A244752), no base-2 WPSPs are known. Since two necessary conditions for a composite to be a base-2 WPSP are that, both, it is a base-2 Fermat pseudoprime (A001567) and all its prime factors are Wieferich primes (cf. A270833), as shown in the comments in A240719, it seems that the first base-2 WPSP, if it exists, is probably very large. This appears to be supported by the guess that the properties of a composite to be a term of A001567 and of A270833 are "independent" of each other and by the observation that the scatterplot of A256517 seems to become "less dense" at the x-axis parallel line y = 2 for increasing n. It has been suggested in the literature that there could be asymptotically about log(log(x)) Wieferich primes below some number x, which is a function that grows to infinity, but does so very slowly. Considering the above constraints, the number of WPSPs may grow even more slowly, suggesting any such number, should it exist, probably lies far beyond any bound a brute-force search could reach in the forseeable future. Therefore I guess that the conjecture may be false, but a disproof or the discovery of a counterexample are probably extraordinarily difficult problems. - Felix Fröhlich, Jan 18 2019
Named after the German mathematician Arthur Josef Alwin Wieferich (1884-1954). a(1) = 1093 was found by Waldemar Meissner in 1913. a(2) = 3511 was found by N. G. W. H. Beeger in 1922. - Amiram Eldar, Jun 05 2021
From Jianing Song, Jun 21 2025: (Start)
The ring of integers of Q(2^(1/k)) is Z[2^(1/k)] if and only if k does not have a prime factor in this sequence (k is in A342390). See Theorem 5.3 of the paper of Keith Conrad. For example, we have:
(1 + 2^(364/1093) + 2^(2*364/1093) + ... + 2^(1092*364/1093))/1093 is an algebraic integer, but it is not in Z[2^(1/1093)];
(1 + 2^(1755/3511) + 2^(2*1755/3511) + ... + 2^(3510*1755/3511))/3511 is an algebraic integer, but it is not in Z[2^(1/3511)]. (End)

References

  • Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 28.
  • Richard K. Guy, Unsolved Problems in Number Theory, A3.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 91.
  • Yves Hellegouarch, "Invitation aux mathématiques de Fermat Wiles", Dunod, 2eme Edition, pp. 340-341.
  • Pace Nielsen, Wieferich primes, heuristics, computations, Abstracts Amer. Math. Soc., 33 (#1, 20912), #1077-11-48.
  • Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 263.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 230-234.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, NY, 1986, p. 163.

Crossrefs

Cf. similar primes related to the first case of Fermat's last theorem: A007540, A088164.
Sequences "primes p such that p^2 divides X^(p-1)-1": A014127 (X=3), A123692 (X=5), A212583 (X=6), A123693 (X=7), A045616 (X=10), A111027 (X=12), A128667 (X=13), A234810 (X=14), A242741 (X=15), A128668 (X=17), A244260 (X=18), A090968 (X=19), A242982 (X=20), A298951 (X=22), A128669 (X=23), A306255 (X=26), A306256 (X=30).

Programs

  • GAP
    Filtered([1..50000],p->IsPrime(p) and (2^(p-1)-1) mod p^2 =0); # Muniru A Asiru, Apr 03 2018
    
  • Haskell
    import Data.List (elemIndices)
    a001220 n = a001220_list !! (n-1)
    a001220_list = map (a000040 . (+ 1)) $ elemIndices 1 a196202_list
    -- Reinhard Zumkeller, Sep 29 2011
    
  • Magma
    [p : p in PrimesUpTo(310000) | IsZero((2^(p-1) - 1) mod (p^2))]; // Vincenzo Librandi, Jan 19 2019
  • Maple
    wieferich := proc (n) local nsq, remain, bin, char: if (not isprime(n)) then RETURN("not prime") fi: nsq := n^2: remain := 2: bin := convert(convert(n-1, binary),string): remain := (remain * 2) mod nsq: bin := substring(bin,2..length(bin)): while (length(bin) > 1) do: char := substring(bin,1..1): if char = "1" then remain := (remain * 2) mod nsq fi: remain := (remain^2) mod nsq: bin := substring(bin,2..length(bin)): od: if (bin = "1") then remain := (remain * 2) mod nsq fi: if remain = 1 then RETURN ("Wieferich prime") fi: RETURN ("non-Wieferich prime"): end: # Ulrich Schimke (ulrschimke(AT)aol.com), Nov 01 2001
  • Mathematica
    Select[Prime[Range[50000]],Divisible[2^(#-1)-1,#^2]&]  (* Harvey P. Dale, Apr 23 2011 *)
    Select[Prime[Range[50000]],PowerMod[2,#-1,#^2]==1&] (* Harvey P. Dale, May 25 2016 *)
  • PARI
    N=10^4; default(primelimit,N);
    forprime(n=2,N,if(Mod(2,n^2)^(n-1)==1,print1(n,", ")));
    \\ Joerg Arndt, May 01 2013
    
  • Python
    from sympy import prime
    from gmpy2 import powmod
    A001220_list = [p for p in (prime(n) for n in range(1,10**7)) if powmod(2,p-1,p*p) == 1]
    # Chai Wah Wu, Dec 03 2014
    

Formula

(A178815(A000720(p))^(p-1) - 1) mod p^2 = A178900(n), where p = a(n). - Jonathan Sondow, Jun 29 2010
Odd primes p such that A002326((p^2-1)/2) = A002326((p-1)/2). See A182297. - Thomas Ordowski, Feb 04 2014

A061398 Number of squarefree integers between prime(n) and prime(n+1).

Original entry on oeis.org

0, 0, 1, 1, 0, 2, 0, 2, 1, 1, 3, 2, 1, 1, 1, 3, 0, 3, 2, 0, 3, 1, 3, 4, 0, 1, 2, 0, 2, 6, 2, 2, 1, 5, 0, 2, 3, 2, 1, 3, 0, 6, 0, 2, 0, 7, 8, 1, 0, 2, 3, 0, 3, 3, 3, 3, 0, 2, 1, 1, 5, 7, 2, 0, 1, 9, 2, 4, 0, 0, 4, 3, 2, 2, 2, 2, 5, 2, 4, 6, 0, 5, 0, 4, 1, 3, 4, 1, 1, 2, 6, 4, 1, 4, 2, 2, 7, 0, 8, 4, 4, 3, 2, 1, 2
Offset: 1

Views

Author

Labos Elemer, Jun 07 2001

Keywords

Examples

			Between 113 and 127 the 6 squarefree numbers are 114, 115, 118, 119, 122, 123, so a(30)=6.
From _Gus Wiseman_, Nov 06 2024: (Start)
The a(n) squarefree numbers for n = 1..16:
  1   2   3   4   5   6   7   8   9   10  11  12  13  14  15  16
  ---------------------------------------------------------------
  .   .   6   10  .   14  .   21  26  30  33  38  42  46  51  55
                      15      22          34  39              57
                                          35                  58
(End)
		

Crossrefs

Cf. A179211. [Reinhard Zumkeller, Jul 05 2010]
Counting all composite numbers (not just squarefree) gives A046933.
The version for nonsquarefree numbers is A061399.
Zeros are A068360.
The version for prime-powers is A080101.
Partial sums are A337030.
The version for non-prime-powers is A368748.
Excluding prime(n+1) from the range gives A373198.
Ones are A377430.
Positives are A377431.
The version for perfect-powers is A377432.
The version for non-perfect-powers is A377433 + 2.
For squarefree numbers (A005117) between primes:
- length is A061398 (this sequence)
- min is A112926
- max is A112925
- sum is A373197
For squarefree numbers between powers of two:
- length is A077643 (except initial terms), partial sums A143658
- min is A372683, difference A373125, indices A372540, firsts of A372475
- max is A372889, difference A373126
- sum is A373123
For primes between powers of two:
- length is A036378
- min is A104080 or A014210, indices A372684 (firsts of A035100)
- max is A014234, difference A013603
- sum is A293697 (except initial terms)

Programs

  • Maple
    p:= 2:
    for n from 1 to 200 do
      q:= nextprime(p);
    A[n]:= nops(select(numtheory:-issqrfree, [$p+1..q-1]));
    p:= q;
    od:
    seq(A[i],i=1..200); # Robert Israel, Jan 06 2017
  • Mathematica
    a[n_] := Count[Range[Prime[n]+1, Prime[n+1]-1], _?SquareFreeQ];
    Array[a, 100] (* Jean-François Alcover, Feb 28 2019 *)
    Count[Range[#[[1]]+1,#[[2]]-1],?(SquareFreeQ[#]&)]&/@Partition[ Prime[ Range[120]],2,1] (* _Harvey P. Dale, Oct 14 2021 *)
  • PARI
    { n=0; q=2; forprime (p=3, prime(1001), a=0; for (i=q+1, p-1, a+=issquarefree(i)); write("b061398.txt", n++, " ", a); q=p ) } \\ Harry J. Smith, Jul 22 2009
    
  • PARI
    a(n) = my(pp=prime(n)+1); sum(k=pp, nextprime(pp)-1, issquarefree(k)); \\ Michel Marcus, Feb 28 2019
    
  • Python
    from math import isqrt
    from sympy import mobius, prime, nextprime
    def A061398(n):
        p = prime(n)
        q = nextprime(p)
        r = isqrt(p-1)+1
        return sum(mobius(k)*((q-1)//k**2) for k in range(r,isqrt(q-1)+1))+sum(mobius(k)*((q-1)//k**2-(p-1)//k**2) for k in range(1,r))-1 # Chai Wah Wu, Jun 01 2024

Formula

a(n) = A013928(A000040(n+1)) - A013928(A000040(n)) - 1. - Robert Israel, Jan 06 2017
a(n) = A373198(n) - 1. - Gus Wiseman, Nov 06 2024

A068781 Lesser of two consecutive numbers each divisible by a square.

Original entry on oeis.org

8, 24, 27, 44, 48, 49, 63, 75, 80, 98, 99, 116, 120, 124, 125, 135, 147, 152, 168, 171, 175, 188, 207, 224, 242, 243, 244, 260, 275, 279, 288, 296, 315, 324, 332, 342, 343, 350, 351, 360, 363, 368, 375, 387, 404, 423, 424, 440, 459, 475, 476, 495, 507, 512
Offset: 1

Views

Author

Robert G. Wilson v, Mar 04 2002

Keywords

Comments

Also numbers m such that mu(m)=mu(m+1)=0, where mu is the Moebius-function (A008683); A081221(a(n))>1. - Reinhard Zumkeller, Mar 10 2003
The sequence contains an infinite family of arithmetic progressions like {36a+8}={8,44,80,116,152,188,...} ={4(9a+2)}. {36a+9} provides 2nd nonsquarefree terms. Such AP's can be constructed to any term by solution of a system of linear Diophantine equation. - Labos Elemer, Nov 25 2002
1. 4k^2 + 4k is a member for all k; i.e., 8 times a triangular number is a member. 2. (4k+1) times an odd square - 1 is a member. 3. (4k+3) times odd square is a member. - Amarnath Murthy, Apr 24 2003
The asymptotic density of this sequence is 1 - 2/zeta(2) + Product_{p prime} (1 - 2/p^2) = 1 - 2 * A059956 + A065474 = 0.1067798952... (Matomäki et al., 2016). - Amiram Eldar, Feb 14 2021
Maximum of the n-th maximal anti-run of nonsquarefree numbers (A013929) differing by more than one. For runs instead of anti-runs we have A376164. For squarefree instead of nonsquarefree we have A007674. - Gus Wiseman, Sep 14 2024

Examples

			44 is in the sequence because 44 = 2^2 * 11 and 45 = 3^2 * 5.
From _Gus Wiseman_, Sep 14 2024: (Start)
Splitting nonsquarefree numbers into maximal anti-runs gives:
  (4,8)
  (9,12,16,18,20,24)
  (25,27)
  (28,32,36,40,44)
  (45,48)
  (49)
  (50,52,54,56,60,63)
  (64,68,72,75)
  (76,80)
  (81,84,88,90,92,96,98)
  (99)
The maxima are a(n). The corresponding pairs are (8,9), (24,25), (27,28), (44,45), etc.
(End)
		

Crossrefs

Subsequence of A261869.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.

Programs

  • Haskell
    a068781 n = a068781_list !! (n-1)
    a068781_list = filter ((== 0) . a261869) [1..]
    -- Reinhard Zumkeller, Sep 04 2015
    
  • Mathematica
    Select[ Range[2, 600], Max[ Transpose[ FactorInteger[ # ]] [[2]]] > 1 && Max[ Transpose[ FactorInteger[ # + 1]] [[2]]] > 1 &]
    f@n_:= Flatten@Position[Partition[SquareFreeQ/@Range@2000,n,1], Table[False,{n}]]; f@2 (* Hans Rudolf Widmer, Aug 30 2022 *)
    Max/@Split[Select[Range[100], !SquareFreeQ[#]&],#1+1!=#2&]//Most (* Gus Wiseman, Sep 14 2024 *)
  • PARI
    isok(m) = !moebius(m) && !moebius(m+1); \\ Michel Marcus, Feb 14 2021

Formula

A261869(a(n)) = 0. - Reinhard Zumkeller, Sep 04 2015

A373198 Number of squarefree numbers from prime(n) to prime(n+1) - 1.

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 1, 3, 2, 2, 4, 3, 2, 2, 2, 4, 1, 4, 3, 1, 4, 2, 4, 5, 1, 2, 3, 1, 3, 7, 3, 3, 2, 6, 1, 3, 4, 3, 2, 4, 1, 7, 1, 3, 1, 8, 9, 2, 1, 3, 4, 1, 4, 4, 4, 4, 1, 3, 2, 2, 6, 8, 3, 1, 2, 10, 3, 5, 1, 1, 5, 4, 3, 3, 3, 3, 6, 3, 5, 7, 1, 6, 1, 5, 2, 4, 5
Offset: 1

Views

Author

Gus Wiseman, May 29 2024

Keywords

Examples

			This is the sequence of row-lengths of A005117 treated as a triangle with row-sums A373197:
   2
   3
   5   6
   7  10
  11
  13  14  15
  17
  19  21  22
  23  26
  29  30
  31  33  34  35
  37  38  39
  41  42
  43  46
  47  51
  53  55  57  58
		

Crossrefs

Counting all numbers (not just squarefree) gives A001223, sum A371201.
For composite instead of squarefree we have A046933.
For squarefree numbers (A005117) between primes:
- sum is A373197
- length is A373198 (this sequence) = A061398 - 1
- min is A000040
- max is A112925, opposite A112926
For squarefree numbers between powers of two:
- sum is A373123
- length is A077643, partial sums A143658
- min is A372683, delta A373125, indices A372540, firsts of A372475
- max is A372889, delta A373126
For primes between powers of two:
- sum is A293697 (except initial terms)
- length is A036378
- min is A104080 or A014210, indices A372684 (firsts of A035100)
- max is A014234, delta A013603
Cf. A372473 (firsts of A372472), A372541 (firsts of A372433).

Programs

  • Mathematica
    Table[Length[Select[Range[Prime[n],Prime[n+1]-1],SquareFreeQ]],{n,100}]
  • Python
    from math import isqrt
    from sympy import prime, nextprime, mobius
    def A373198(n):
        p = prime(n)
        q = nextprime(p)
        r = isqrt(p-1)+1
        return sum(mobius(k)*((q-1)//k**2) for k in range(r,isqrt(q-1)+1))+sum(mobius(k)*((q-1)//k**2-(p-1)//k**2) for k in range(1,r)) # Chai Wah Wu, Jun 01 2024

Formula

a(n) = A061398(n) + 1.

A049093 Numbers n such that 2^n - 1 is squarefree.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92
Offset: 1

Views

Author

Keywords

Comments

Numbers n such that gcd(n, 2^n - 1) = 1 and n is not a multiple of A002326((q - 1)/2), where q is a Wieferich prime A001220. - Thomas Ordowski, Nov 21 2015
If n is in the sequence, then so are all divisors of n. - Robert Israel, Nov 23 2015

Examples

			a(7) = 8 because 2^8 - 1 = 255 = 3 * 5 * 17 is squarefree.
		

Crossrefs

Complement of A049094.

Programs

  • Magma
    [n: n in [1..100] | IsSquarefree(2^n-1)]; // Vincenzo Librandi, Nov 22 2015
  • Maple
    N:= 400: # to get all terms <= N
    # This relies on the fact that the first N+1 members of A000225 have all been factored
    # without any further Wieferich primes being found.
    V:= Vector(N,1):
    V[364 * [$1..N/364]]:= 0:
    V[1755 * [$1..N/1755]]:= 0:
    for n from 2 to N do
    if V[n] = 0 then next fi;
    if igcd(n, 2 &^n - 1 mod n) > 1 then
      V[n * [$1..N/n]]:= 0
    fi;
    od:
    select(t -> V[t] = 1, [$1..N]); # Robert Israel, Nov 23 2015
  • Mathematica
    Select[Range@ 92, SquareFreeQ[2^# - 1] &] (* Michael De Vlieger, Nov 21 2015 *)
  • PARI
    isok(n) = issquarefree(2^n - 1); \\ Michel Marcus, Dec 19 2013
    

Extensions

Terms a(73)-a(910) in b-file from Max Alekseyev, Nov 15 2014, Sep 28 2015

A373127 Length of the n-th maximal antirun of squarefree numbers differing by more than one.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 4, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 5, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 4, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 2, 1, 2, 1, 2, 4, 2, 1, 4, 1, 3, 2, 1, 2, 1, 2, 1, 2, 2, 1, 4, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 4, 1, 3, 4, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2024

Keywords

Comments

The sum of this antirun is given by A373411.
An antirun of a sequence (in this case A005117) is an interval of positions at which consecutive terms differ by more than one.

Examples

			Row-lengths of:
   1
   2
   3  5
   6
   7 10
  11 13
  14
  15 17 19 21
  22
  23 26 29
  30
  31 33
  34
  35 37
  38
  39 41
  42
  43 46
  47 51 53 55 57
		

Crossrefs

Positions of first appearances are A373128, sorted A373200.
Functional neighbors: A007674, A027833 (partial sums A029707), A120992, A373403, A373408, A373409, A373411.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A077643 counts squarefree numbers with n bits, sum A373123.

Programs

  • Mathematica
    Length/@Split[Select[Range[100],SquareFreeQ],#1+1!=#2&]

A372433 Binary weight (number of ones in binary expansion) of the n-th squarefree number.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 2, 3, 3, 3, 4, 2, 3, 3, 3, 4, 3, 4, 4, 5, 2, 2, 3, 3, 3, 4, 3, 3, 4, 4, 5, 4, 4, 5, 4, 4, 5, 5, 5, 2, 2, 3, 3, 3, 4, 3, 3, 4, 4, 5, 3, 4, 4, 4, 5, 4, 5, 5, 5, 6, 3, 4, 4, 5, 4, 4, 5, 5, 5, 6, 4, 4, 5, 5, 6, 5, 6, 7, 2, 2, 3, 3, 3, 3, 3, 4, 4
Offset: 1

Views

Author

Gus Wiseman, May 04 2024

Keywords

Crossrefs

Restriction of A000120 to A005117.
For prime instead of squarefree we have A014499, zeros A035103.
Counting zeros instead of ones gives A372472, cf. A023416, A372473.
For binary length instead of weight we have A372475.
A003714 lists numbers with no successive binary indices.
A030190 gives binary expansion, reversed A030308.
A048793 lists positions of ones in reversed binary expansion, sum A029931.
A145037 counts ones minus zeros in binary expansion, cf. A031443, A031444, A031448, A097110.
A371571 lists positions of zeros in binary expansion, sum A359359.
A371572 lists positions of ones in binary expansion, sum A230877.
A372515 lists positions of zeros in reversed binary expansion, sum A359400.
A372516 counts ones minus zeros in binary expansion of primes, cf. A177718, A177796, A372538, A372539.

Programs

  • Mathematica
    DigitCount[Select[Range[100],SquareFreeQ],2,1]
    Total[IntegerDigits[#,2]]&/@Select[Range[200],SquareFreeQ] (* Harvey P. Dale, Feb 14 2025 *)
  • Python
    from math import isqrt
    from sympy import mobius
    def A372433(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return int(m).bit_count() # Chai Wah Wu, Aug 02 2024

Formula

a(n) = A000120(A005117(n)).
a(n) + A372472(n) = A372475(n) = A070939(A005117(n)).
Showing 1-10 of 49 results. Next