A073936 Numbers k such that 2^k + 1 is the product of two distinct primes.
5, 6, 7, 11, 12, 13, 17, 19, 20, 23, 28, 31, 32, 40, 43, 61, 64, 79, 92, 101, 104, 127, 128, 148, 167, 191, 199, 256, 313, 347, 356, 596, 692, 701, 1004, 1228, 1268, 1709, 2617, 3539, 3824, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239
Offset: 1
Keywords
Examples
11 is a member because 1 + 2^11 = 2049 = 3 * 683. 9 is not a term because 1 + 2^9 = 513 = 3^3 * 19
Links
- Giuseppe Coppoletta, Table of n, a(n) for n = 1..56
- AMS Books Online, Factorizations of b^n = +-1, b=2,3,5,6,7,10,11,12 Up to High Powers, Third Edition.
- Arjen Bot, Factors for 2^n-1 and 2^n+1 for 1200 < n < 10000.
- Jack Brennen, Primes of the form (4^p+1)/5^t, Seqfan (Mar 15 2017).
- C. Caldwell's The Top Twenty Wagstaff primes.
- Mersennewiki, Factorizations Of Cunningham Numbers C+(2,n) (tables).
- Samuel S. Wagstaff, The Cunningham Project.
Programs
-
Mathematica
Do[ If[ Length[ Divisors[1 + 2^n]] == 4, Print[n]], {n, 1, 200}] (* Second program: *) Select[Range@ 200, DivisorSigma[0, 2^# + 1] == 4 &] (* Michael De Vlieger, May 09 2017 *)
-
Sage
[n for n in xsrange(3,200) if sigma(2^n+1,0)==4] # Second program (faster):
-
Sage
v=[]; N=2000 for n in xsrange(4,N): j=valuation(n,2) if j<5: Fj=2^2^j+1; p=ZZ(n/2^j); q=ZZ((2^n+1)/Fj) if p.is_prime() and q.is_prime(proof=false): v.append(n) elif j<9 and n.is_power_of(2): v.append(n) print(v) # Giuseppe Coppoletta, May 11 2017
Extensions
Edited by Robert G. Wilson v, Aug 19 2002
a(28)-a(51) by Giuseppe Coppoletta, May 02 2017
Name reworded by Jon E. Schoenfield, Jun 15 2018
Comments