A049605 Smallest k>1 such that k divides sigma(k*n).
6, 3, 2, 6, 2, 2, 2, 3, 6, 2, 2, 2, 2, 2, 2, 6, 2, 3, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 6, 2, 2, 2, 2, 2
Offset: 1
Links
- R. J. Mathar, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A049605 := proc(n) for k from 2 do if modp(numtheory[sigma](k*n),k) = 0 then return k; end if; end do: end proc: # R. J. Mathar, Oct 26 2015
-
Mathematica
sk[n_]:=Module[{k=2},While[!Divisible[DivisorSigma[1,k*n],k],k++];k]; sk /@ Range[110] (* Harvey P. Dale, Jan 04 2015 *)
-
PARI
a(n) = {k = 2; while(sigma(k*n) % k, k++); k ;} \\ Michel Marcus, Nov 21 2013
Comments