A336103
Number of separable multisets of size n covering an initial interval of positive integers.
Original entry on oeis.org
1, 1, 1, 3, 5, 13, 24, 56, 108, 236, 464, 976, 1936, 3984, 7936, 16128, 32192, 64960, 129792, 260864, 521472, 1045760, 2091008, 4188160, 8375296, 16763904, 33525760, 67080192, 134156288, 268374016, 536739840, 1073610752, 2147205120, 4294688768, 8589344768, 17179279360, 34358493184
Offset: 0
The a(1) = 1 through a(5) = 13 separable multisets:
{1} {1,2} {1,1,2} {1,1,2,2} {1,1,1,2,2}
{1,2,2} {1,1,2,3} {1,1,1,2,3}
{1,2,3} {1,2,2,3} {1,1,2,2,2}
{1,2,3,3} {1,1,2,2,3}
{1,2,3,4} {1,1,2,3,3}
{1,1,2,3,4}
{1,2,2,2,3}
{1,2,2,3,3}
{1,2,2,3,4}
{1,2,3,3,3}
{1,2,3,3,4}
{1,2,3,4,4}
{1,2,3,4,5}
The inseparable version is
A336102.
The strong (weakly decreasing multiplicities) case is
A336106.
Sequences covering an initial interval are
A000670.
Inseparable partitions are
A325535.
Inseparable factorizations are
A333487.
Anti-run compositions are ranked by
A333489.
Heinz numbers of inseparable partitions are
A335448.
Cf.
A001792,
A019472,
A025065,
A049610,
A052841,
A106351,
A269134,
A292884,
A335126,
A335433,
A335452.
-
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
sepQ[m_]:=Select[Permutations[m],!MatchQ[#,{_,x_,x_,_}]&]!={};
Table[Length[Select[allnorm[n],sepQ]],{n,0,5}]
(* or *)
Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],With[{mx=Max@@#},mx<=1+Total[DeleteCases[#,mx,{1},1]]]&]],{n,0,15}] (* or *)
CoefficientList[Series[(x - 1) (2 x^5 + 7 x^4 - 5 x^2 + 1)/((2 x - 1) (2 x^2 - 1)^2), {x, 0, 36}], x] (* Michael De Vlieger, Apr 07 2021 *)
A336102
Number of inseparable multisets of size n covering an initial interval of positive integers.
Original entry on oeis.org
0, 0, 1, 1, 3, 3, 8, 8, 20, 20, 48, 48, 112, 112, 256, 256, 576, 576, 1280, 1280, 2816, 2816, 6144, 6144, 13312, 13312, 28672, 28672, 61440, 61440, 131072, 131072, 278528, 278528, 589824, 589824, 1245184, 1245184, 2621440, 2621440, 5505024, 5505024, 11534336
Offset: 0
The a(2) = 1 through a(7) = 8 multisets:
{11} {111} {1111} {11111} {111111} {1111111}
{1112} {11112} {111112} {1111112}
{1222} {12222} {111122} {1111122}
{111123} {1111123}
{112222} {1122222}
{122222} {1222222}
{122223} {1222223}
{123333} {1233333}
The strong (weakly decreasing multiplicities) case is
A025065.
Sequences covering an initial interval are
A000670.
Inseparable partitions are
A325535.
Inseparable factorizations are
A333487.
Anti-run compositions are ranked by
A333489.
Heinz numbers of inseparable partitions are
A335448.
Cf.
A001792,
A019472,
A052841,
A106351,
A124767,
A269134,
A292884,
A335433,
A335126,
A335452,
A335548.
-
Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],With[{mx=Max@@#},mx>1+Total[DeleteCases[#,mx,{1},1]]]&]],{n,0,15}]
(* Second program: *)
CoefficientList[Series[x^2*(1 - x) (x + 1)^2/(2 x^2 - 1)^2, {x, 0, 43}], x] (* Michael De Vlieger, Apr 07 2021 *)
A336106
Number of integer partitions of n whose greatest part is at most one more than the sum of the other parts.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 7, 11, 15, 23, 30, 44, 58, 82, 105, 146, 186, 252, 318, 423, 530, 695, 863, 1116, 1380, 1763, 2164, 2738, 3345, 4192, 5096, 6334, 7665, 9459, 11395, 13968, 16765, 20425, 24418, 29588, 35251, 42496, 50460, 60547, 71669, 85628
Offset: 0
The a(1) = 1 through a(8) = 15 partitions:
(1) (11) (21) (22) (32) (33) (43) (44)
(111) (211) (221) (222) (322) (332)
(1111) (311) (321) (331) (422)
(2111) (2211) (421) (431)
(11111) (3111) (2221) (2222)
(21111) (3211) (3221)
(111111) (4111) (3311)
(22111) (4211)
(31111) (22211)
(211111) (32111)
(1111111) (41111)
(221111)
(311111)
(2111111)
(11111111)
The inseparable version is
A025065.
The Heinz numbers of these partitions are
A335127.
Sequences covering an initial interval are
A000670.
Inseparable partitions are
A325535.
Separable factorizations are
A335434.
Heinz numbers of separable partitions are
A335433.
-
Table[Length[Select[IntegerPartitions[n],2*Max@@#<=1+n&]],{n,0,15}]
A287879
Irregular triangle read by rows: normalized dimensions of certain generalized quadratic residue codes of length n.
Original entry on oeis.org
2, 4, 2, 8, 6, 16, 16, 18, 32, 40, 50, 64, 96, 132, 146, 128, 224, 336, 406, 256, 512, 832, 1088, 1186, 512, 1152, 2016, 2832, 3330, 1024, 2560, 4800, 7200, 9060, 9762, 2048, 5632, 11264, 17952, 24024, 27654, 4096, 12288, 26112, 44032, 62352, 76176, 81330, 8192, 26624, 59904, 106496, 158912, 204984, 232050, 16384, 57344, 136192, 254464, 398720, 540736, 645540, 684210
Offset: 1
Triangle begins:
[2],
[4, 2],
[8, 6],
[16, 16, 18],
[32, 40, 50],
[64, 96, 132, 146],
[128, 224, 336, 406],
[256, 512, 832, 1088, 1186],
[512, 1152, 2016, 2832, 3330],
[1024, 2560, 4800, 7200, 9060, 9762],
[2048, 5632, 11264, 17952, 24024, 27654],
[4096, 12288, 26112, 44032, 62352, 76176, 81330],
[8192, 26624, 59904, 106496, 158912, 204984, 232050],
[16384, 57344, 136192, 254464, 398720, 540736, 645540, 684210],
...
-
g:=proc(m,w) local k;
if w=0 then 2^m else
2^m*add( (m/(m-w))*binomial(w-1,w-k)*binomial(m-w,k)/4^k, k=1..w);
fi;
end;
for n from 1 to 14 do
lprint( [seq(g(n,w),w=0..floor(n/2))]);
od;
Showing 1-4 of 4 results.
Comments