A049615 Array T by antidiagonals; T(i,j) = number of lattice points (x,y) hidden from (i,j), where 0<=x<=i, 0<=y<=j; (x,y) is hidden if there is a lattice point (h,k) collinear with and between (x,y) and (i,j).
0, 0, 0, 1, 0, 1, 2, 1, 1, 2, 3, 2, 3, 2, 3, 4, 3, 4, 4, 3, 4, 5, 4, 6, 6, 6, 4, 5, 6, 5, 7, 8, 8, 7, 5, 6, 7, 6, 9, 9, 11, 9, 9, 6, 7, 8, 7, 10, 12, 12, 12, 12, 10, 7, 8, 9, 8, 12, 13, 16, 14, 16, 13, 12, 8, 9, 10, 9, 13, 15, 17, 18, 18, 17, 15, 13, 9, 10
Offset: 0
Examples
Antidiagonals (each starting on row 0): {0}; {0,0}; {1,0,1}; ... Array begins: 0 0 1 2 3 4 5 0 0 1 2 3 4 5 1 1 3 4 6 7 9 2 2 4 6 8 9 12 3 3 6 8 11 12 16 4 4 7 9 12 14 18 5 5 9 12 16 18 23 ...
Links
- Ivan Neretin, Table of n, a(n) for n = 0..5049
Programs
-
Maple
N := 20: # to get the first N*(N+1)/2 terms T:= Array(1..N+1,1..N+1): B:= Array(1..N+1,1..N+1, (i,j) -> `if`(igcd(i-1,j-1)>1,1,0)): T[1,1..N+1]:= Statistics:-CumulativeSum(B[1,1..N+1]): for i from 2 to N+1 do T[i,1..N+1]:= T[i-1,1..N+1] + Statistics:-CumulativeSum(B[i,1..N+1]) od: seq(seq(round(T[i+1,t-i+1]),i=0..t),t=0..N); # Robert Israel, Jun 25 2015 # alternative program R. J. Mathar, Oct 26 2015 A049615 := proc(n,k) local a,x,y; a := 0 ; for x from 0 to n do for y from 0 to k do if igcd(x,y) > 1 then a := a+1 ; end if; end do: end do: a; end proc: seq(seq(A049615(d-k,k),k=0..d),d=0..10) ;
-
Mathematica
Table[Length[Select[Flatten[Table[{x, y}, {x, 0, n - k}, {y, 0, k}], 1], GCD @@ # > 1 &]], {n, 0, 11}, {k, 0, n}] // Flatten (* Ivan Neretin, Jun 25 2015 *)
-
PARI
T(n,k) = sum(i=0, n, sum(j=0, k, gcd(i,j)>1)); tabl(7, 7, n, k, T(n-1, k-1)) \\ Michel Marcus, Aug 06 2021
Comments