cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A049627 Array T read by diagonals; T(i,j)=(i+1)*(j+1)-H(i,j), where H is the array in A049615; thus T(i,j) is the number of lattice points in rectangle having diagonal (0,0)-to-(i,j) that are visible from (i,j).

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 2, 5, 5, 2, 2, 6, 6, 6, 2, 2, 7, 8, 8, 7, 2, 2, 8, 9, 10, 9, 8, 2, 2, 9, 11, 12, 12, 11, 9, 2, 2, 10, 12, 15, 14, 15, 12, 10, 2, 2, 11, 14, 16, 18, 18, 16, 14, 11, 2, 2, 12, 15, 19, 19, 22, 19, 19, 15, 12, 2, 2, 13, 17, 21, 23, 24, 24, 23, 21
Offset: 0

Views

Author

Keywords

Examples

			Diagonals (each starting on row 0):
  {1};
  {2,2};
  {2,4,2};
  ...
Array begins:
  1  2  2  2  2  2  2
  2  4  5  6  7  8  9
  2  5  6  8  9 11 12
  2  6  8 10 12 15 16
  2  7  9 12 14 18 19
  2  8 11 15 18 22 24
  2  9 12 16 19 24 26
		

Crossrefs

Cf. A049615.

Programs

  • PARI
    T(n,k) = (n+1)*(k+1) - sum(i=0, n, sum(j=0, k, gcd(i,j)>1));
    matrix(7,7,n,k, T(n-1,k-1)) \\ Michel Marcus, Aug 06 2021

A049617 a(n) = Sum_{i=0..2n} (-1)^i * T(i,2n-i) where T is A049615.

Original entry on oeis.org

0, 2, 5, 8, 13, 18, 23, 30, 39, 46, 55, 66, 75, 88, 101, 110, 127, 144, 157, 176, 193, 206, 227, 250, 267, 288, 313, 332, 357, 386, 403, 434, 467, 488, 521, 546, 571, 608, 645, 670, 703, 744, 769, 812, 853, 878, 923, 970, 1003, 1046, 1087
Offset: 0

Views

Author

Keywords

Programs

A049616 a(n) = Sum_{i=1..n} T(i,n-i), where T is A049615.

Original entry on oeis.org

0, 0, 2, 6, 13, 22, 36, 52, 73, 98, 130, 164, 207, 252, 306, 368, 439, 512, 598, 686, 787, 898, 1022, 1148, 1291, 1440, 1604, 1778, 1969, 2162, 2378, 2596, 2831, 3080, 3348, 3628, 3933, 4240, 4568, 4912, 5281, 5652, 6054, 6458, 6887, 7338, 7814, 8292, 8803
Offset: 0

Views

Author

Keywords

Extensions

More terms from Sean A. Irvine, Aug 05 2021

A049618 a(n) = Sum_{i=0..floor(n/2)} T(2i,n-2i) where T is A049615.

Original entry on oeis.org

0, 0, 2, 3, 9, 11, 22, 26, 43, 49, 74, 82, 115, 126, 168, 184, 239, 256, 322, 343, 421, 449, 544, 574, 683, 720, 846, 889, 1035, 1081, 1244, 1298, 1479, 1540, 1746, 1814, 2045, 2120, 2372, 2456, 2737, 2826, 3130, 3229, 3557, 3669, 4032, 4146, 4535, 4661, 5080
Offset: 0

Views

Author

Keywords

Extensions

More terms from Sean A. Irvine, Aug 05 2021

A049619 a(n) = Sum_{i=0..floor((n+1)/2)} T(2i+1,n-2i-1) where T is A049615.

Original entry on oeis.org

0, 0, 0, 3, 4, 11, 14, 26, 30, 49, 56, 82, 92, 126, 138, 184, 200, 256, 276, 343, 366, 449, 478, 574, 608, 720, 758, 889, 934, 1081, 1134, 1298, 1352, 1540, 1602, 1814, 1888, 2120, 2196, 2456, 2544, 2826, 2924, 3229, 3330, 3669, 3782, 4146, 4268, 4661, 4792
Offset: 0

Views

Author

Keywords

Extensions

More terms from Sean A. Irvine, Aug 05 2021

A049620 a(n) = T(n,n), array T as in A049615.

Original entry on oeis.org

0, 0, 3, 6, 11, 14, 23, 26, 35, 42, 55, 58, 75, 78, 95, 110, 127, 130, 155, 158, 183, 202, 227, 230, 263, 274, 303, 322, 355, 358, 403, 406, 439, 466, 503, 526, 575, 578, 619, 650, 699, 702, 763, 766, 815, 858, 907, 910, 975, 990, 1051, 1090, 1147, 1150, 1223, 1254, 1319, 1362, 1423, 1426, 1515, 1518, 1583
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= Length[Select[Flatten[Table[{x, y}, {x,0,n}, {y,0,k}], 1], GCD @@ # > 1 &]]; Table[T[n, n], {n,0,65}] (* G. C. Greubel, Dec 16 2019 *)

Extensions

Terms a(38) onward added by G. C. Greubel, Dec 16 2019

A049621 a(n) = T(n,n+1), array T as in A049615.

Original entry on oeis.org

0, 1, 4, 8, 12, 18, 24, 30, 38, 48, 56, 66, 76, 86, 102, 118, 128, 142, 156, 170, 192, 214, 228, 246, 268, 288, 312, 338, 356, 380, 404, 422, 452, 484, 514, 550, 576, 598, 634, 674, 700, 732, 764, 790, 836, 882, 908, 942, 982, 1020, 1070, 1118, 1148, 1186, 1238, 1286, 1340, 1392, 1424, 1470, 1516
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= Length[Select[Flatten[Table[{x, y}, {x,0,n}, {y,0,k}], 1], GCD @@ # > 1 &]]; Table[T[n, n+1], {n,0,65}] (* G. C. Greubel, Dec 16 2019 *)

Extensions

Terms a(37) onward added by G. C. Greubel, Dec 16 2019

A049622 a(n) = T(n,n+2), array T as in A049615.

Original entry on oeis.org

1, 2, 6, 9, 16, 19, 28, 33, 44, 49, 64, 67, 84, 93, 110, 119, 140, 143, 168, 179, 204, 215, 244, 251, 282, 297, 328, 339, 378, 381, 420, 435, 470, 495, 538, 551, 596, 613, 658, 675, 730, 733, 788, 811, 860, 883, 940, 949, 1012, 1039, 1098, 1119, 1184, 1201, 1270, 1307, 1370, 1393, 1468, 1471, 1548, 1577
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= Length[Select[Flatten[Table[{x, y}, {x,0,n}, {y,0,k}], 1], GCD @@ # > 1 &]]; Table[T[n, n+2], {n,0,65}] (* G. C. Greubel, Dec 16 2019 *)

Extensions

Terms a(37) onward added by G. C. Greubel, Dec 16 2019

A049623 a(n) = T(n,n+3), array T as in A049615.

Original entry on oeis.org

2, 3, 7, 12, 17, 22, 31, 38, 45, 56, 65, 74, 91, 100, 111, 130, 141, 154, 177, 190, 205, 230, 249, 264, 291, 312, 329, 360, 379, 396, 433, 452, 481, 518, 539, 570, 611, 636, 659, 704, 731, 756, 809, 834, 861, 914, 947, 978, 1031, 1066, 1099, 1154, 1199, 1232, 1291, 1336, 1371, 1436, 1469, 1502, 1575
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= Length[Select[Flatten[Table[{x, y}, {x,0,n}, {y,0,k}], 1], GCD @@ # > 1 &]]; Table[T[n, n+3], {n,0,65}] (* G. C. Greubel, Dec 16 2019 *)

Extensions

Terms a(37) onward added by G. C. Greubel, Dec 16 2019

A049626 a(n) = T(n,4), array T as in A049615.

Original entry on oeis.org

3, 3, 6, 8, 11, 12, 16, 17, 20, 22, 25, 26, 30, 31, 34, 36, 39, 40, 44, 45, 48, 50, 53, 54, 58, 59, 62, 64, 67, 68, 72, 73, 76, 78, 81, 82, 86, 87, 90, 92, 95, 96, 100, 101, 104, 106, 109, 110, 114, 115, 118, 120, 123, 124, 128, 129, 132, 134, 137, 138, 142
Offset: 0

Views

Author

Keywords

Extensions

More terms from Sean A. Irvine, Aug 05 2021
Showing 1-10 of 13 results. Next