cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049645 Numbers k such that the square of the number of divisors of k divides the sum of the divisors of k.

Original entry on oeis.org

1, 3, 7, 11, 19, 21, 23, 31, 33, 35, 43, 47, 57, 59, 62, 67, 69, 71, 77, 79, 83, 91, 93, 94, 103, 105, 107, 115, 119, 127, 129, 131, 133, 139, 141, 151, 155, 158, 161, 163, 167, 177, 179, 186, 189, 191, 199, 201, 203, 209, 211, 213, 217, 223
Offset: 1

Views

Author

Keywords

Comments

Bateman et al. (1981) proved that the asymptotic density of this sequence is 1/2. - Amiram Eldar, Jan 16 2020

References

  • Richard G. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004, chapter 2, p. 76.
  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, chapter III, section 51, page 119.

Crossrefs

Programs

  • Magma
    [k:k in [1..230]| DivisorSigma(1,k) mod (DivisorSigma(0,k))^2 eq 0]; // Marius A. Burtea, Jan 16 2020
  • Maple
    with(numtheory): t := [ ]: f := [ ]: for n from 1 to 500 do if sigma(n) mod sigma[ 0 ](n)^2 = 0 then t := [ op(t), n ] else f := [ op(f), n ]; fi; od: t;
  • Mathematica
    Select[Range[1, 250], Mod[DivisorSigma[1, #], DivisorSigma[0, #]^2] == 0 &] (* G. C. Greubel, Dec 06 2017 *)
  • PARI
    isok(n) = sigma(n) % numdiv(n)^2 == 0; \\ Michel Marcus, Dec 07 2017
    

Formula

{n: A035116(n) | A000203(n)}. - R. J. Mathar, Jan 29 2019