A049651 a(n) = (F(3*n+1) - 1)/2, where F=A000045 (the Fibonacci sequence).
0, 1, 6, 27, 116, 493, 2090, 8855, 37512, 158905, 673134, 2851443, 12078908, 51167077, 216747218, 918155951, 3889371024, 16475640049, 69791931222, 295643364939, 1252365390980, 5305104928861, 22472785106426, 95196245354567, 403257766524696, 1708227311453353, 7236167012338110
Offset: 0
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 24.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Hans Koch, Golden mean renormalization for the almost Mathieu operator and related skew products, arXiv:1907.06804 [math-ph], 2019.
- Wolfdieter Lang, Notes on certain inhomogeneous three term recurrences.
- Hermann Stamm-Wilbrandt, 6 interlaced bisections
- Index entries for linear recurrences with constant coefficients, signature (5,-3,-1).
Programs
-
Magma
[(Fibonacci(3*n+1) - 1)/2: n in [0..30]]; // G. C. Greubel, Dec 05 2017
-
Mathematica
(Fibonacci[Range[1,5!,3]]-1)/2 (* Vladimir Joseph Stephan Orlovsky, May 18 2010 *) LinearRecurrence[{5, -3, -1}, {0, 1, 6}, 50] (* G. C. Greubel, Dec 05 2017 *)
-
PARI
vector(30,n,n--;(fibonacci(3*n+1) -1)/2) \\ G. C. Greubel, Dec 05 2017
-
Sage
[(fibonacci(3*n+1)-1)/2 for n in (0..30)] # G. C. Greubel, Apr 19 2019
Formula
From Ralf Stephan, Jan 23 2003: (Start)
a(n) = 4*a(n-1) + a(n-2) + 2, a(0)=0, a(1)=1.
G.f.: x*(1+x)/((1-x)*(1-4*x-x^2)).
a(n) is asymptotic to -1/2+(sqrt(5)+5)/20*(sqrt(5)+2)^n. (End)
a(n+1) = F(2) + F(5) + F(8) + ... + F(3n+2).
a(n) = 5*a(n-1) - 3*a(n-2) - a(n-3), a(0)=0, a(1)=1, a(2)= 6. Observation by G. Detlefs. See the W. Lang link. - Wolfdieter Lang, Oct 18 2010
a(2*n) = A077259(2*n); a(2*n+1) = A294262(2*n+1). See "6 interlaced bisections" link. - Hermann Stamm-Wilbrandt, Apr 18 2019
E.g.f.: exp(x)*(exp(x)*(5*cosh(sqrt(5)*x) + sqrt(5)*sinh(sqrt(5)*x)) - 5)/10. - Stefano Spezia, May 24 2024
Comments