A049668 a(n) = Fibonacci(8*n)/21.
0, 1, 47, 2208, 103729, 4873055, 228929856, 10754830177, 505248088463, 23735905327584, 1115082302307985, 52385132303147711, 2460986135945634432, 115613963257141670593, 5431395286949712883439, 255159964523379363851040, 11987086937311880388115441
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..500
- R. Flórez, R. A. Higuita and A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (47,-1).
Programs
-
Magma
[Fibonacci(8*n)/21: n in [0..30]]; // G. C. Greubel, Dec 02 2017
-
Mathematica
Table[Fibonacci[8*n]/21, {n, 15}] (* Michael De Vlieger, Apr 03 2015 *)
-
MuPAD
numlib::fibonacci(8*n)/21 $ n = 0..25; // Zerinvary Lajos, May 09 2008
-
PARI
concat(0, Vec(x/(1-47*x+x^2) + O(x^20))) \\ Colin Barker, Jun 03 2016
-
PARI
for(n=0,30, print1(fibonacci(8*n)/21, ", ")) \\ G. C. Greubel, Dec 02 2017
Formula
G.f.: x/(1-47*x+x^2), 47=L(8)=A000032(8) (Lucas).
a(n) = 47*a(n-1)-a(n-2) ; a(0)=0, a(1)=1. - Philippe Deléham, Nov 18 2008
From Peter Bala, Apr 03 2015: (Start)
For integer k, 1 + k*(14 - k)*Sum_{n >= 1} a(n)*x^(2*n) = ( 1 + k/3*Sum_{n >= 1} Fibonacci(4*n)*x^n )*( 1 + k/3*Sum_{n >= 1} Fibonacci(4*n)*(-x)^n ).
1 + 45*Sum_{n >= 1} a(n)*x^(2*n) = ( 1 + Sum_{n >= 1} Lucas(4*n)*x^n )*( 1 + Sum_{n >= 1} Lucas(4*n)*(-x)^n ).
1 - 36*Sum_{n >= 1} a(n)*x^(2*n) = ( 1 + 2*Sum_{n >= 1} Fibonacci(4*n+2)*x^n )*( 1 + 2*Sum_{n >= 1} Fibonacci(4*n+2)*(-x)^n ). (End)
a(n) = ((47 + 21*sqrt(5))^(1-n)*(-2^n + (2207 + 987*sqrt(5))^n )) /(2205 + 987*sqrt(5)). - Colin Barker, Jun 03 2016
a(n) = (a(n-1)*a(n-2) - 47)/a(n-3), n > 3; a(n) = (a(n-1)^2 - 1)/a(n-2), n > 2. - Klaus Purath, Aug 14 2021
Comments