cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049681 a(n) = (Lucas(2*n) - Lucas(n))/2.

Original entry on oeis.org

0, 1, 2, 7, 20, 56, 152, 407, 1080, 2851, 7502, 19702, 51680, 135461, 354902, 929567, 2434320, 6374236, 16689752, 43697227, 114405500, 299525051, 784179002, 2053027082, 5374926720, 14071792681
Offset: 0

Views

Author

Keywords

Comments

Create a triangle with T(n,1) = L(n-1) for L a Lucas number and the other side T(n,n) = L(2*(n-1)). Interior elements are defined as T(r,c) = T(r-1,c-1) + T(r-1,c). Half the sum of the terms in row(n)=a(n) for n=1,2,3... - J. M. Bergot, Dec 15 2012

Crossrefs

Programs

  • GAP
    List([0..30], n-> (Lucas(1,-1,2*n)[2] - Lucas(1,-1,n)[2])/2 ); # G. C. Greubel, Dec 15 2019
  • Magma
    [(Lucas(2*n) - Lucas(n))/2: n in [0..30]]; // G. C. Greubel, Dec 02 2017
    
  • Maple
    Lucas:= n -> combinat:-fibonacci(n+1)+combinat:-fibonacci(n-1):
    seq((Lucas(2*n)-Lucas(n))/2,n=0..100); # Robert Israel, Sep 15 2016
  • Mathematica
    Table[(LucasL[2n] - LucasL[n])/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x*(1-2*x+2*x^2)/((1-x-x^2)*(1-3*x+x^2)) )) \\ G. C. Greubel, Dec 02 2017
    
  • Sage
    [(lucas_number2(2*n,1,-1) - lucas_number2(n,1,-1))/2 for n in (0..30)] # G. C. Greubel, Dec 15 2019
    

Formula

G.f.: x*(1-2*x+2*x^2)/( (1-x-x^2)*(1-3*x+x^2) ). - R. J. Mathar, Dec 17 2012
a(n) = Lucas(n)*(Lucas(n) - 1)/2 - (-1)^n = binomial(Lucas(n), 2) - (-1)^n. - Vladimir Reshetnikov, Sep 27 2016
E.g.f.: (1/2)*exp(-2*x/(1+sqrt(5)))*(-1 + exp(x))*(1 + exp(sqrt(5)*x)). - Stefano Spezia, Dec 15 2019

Extensions

Corrected by Franklin T. Adams-Watters, Oct 25 2006
Corrected by T. D. Noe, Nov 01 2006