cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A332569 a(n) = Sum_{k=1..n} floor(n/k) * ceiling(n/k).

Original entry on oeis.org

1, 5, 12, 23, 36, 54, 74, 97, 125, 156, 186, 226, 268, 306, 354, 409, 458, 515, 574, 636, 710, 778, 838, 922, 1013, 1086, 1168, 1264, 1350, 1452, 1556, 1651, 1762, 1864, 1966, 2105, 2234, 2332, 2448, 2594, 2726, 2864, 3004, 3132, 3294, 3444, 3564, 3736, 3917, 4067
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 16 2020

Keywords

Crossrefs

Programs

  • Magma
    [&+[Floor(n/k)*Ceiling(n/k):k in [1..n]]:n in [1..50]]; // Marius A. Burtea, Feb 16 2020
    
  • Mathematica
    Table[Sum[Ceiling[n/k] Floor[n/k], {k, 1, n}], {n, 1, 50}]
    Table[1 + Sum[DivisorSigma[1, k] + DivisorSigma[1, k + 1], {k, 1, n - 1}], {n, 1, 50}]
    nmax = 50; CoefficientList[Series[((1 + x)/(1 - x)) Sum[x^k/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sum(k=1, n, my(q=n/k); floor(q) * ceil(q)); \\ Michel Marcus, Feb 17 2020
    
  • Python
    from math import isqrt
    from sympy import divisor_sigma
    def A332569(n): return -(s:=isqrt(n))**2*(s+1)+sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))-divisor_sigma(n) # Chai Wah Wu, Oct 23 2023

Formula

G.f.: ((1 + x) / (1 - x)) * Sum_{k>=1} x^k / (1 - x^k)^2.
a(n) = 1 + Sum_{k=1..n-1} (sigma(k) + sigma(k+1)) for n > 0.
a(n) ~ (Pi*n)^2/6. - Vaclav Kotesovec, Jun 24 2021
Showing 1-1 of 1 results.