A049768 a(n) = Sum_{k = 1..n} T(n,k), where array T is A049767.
0, 1, 3, 3, 13, 14, 22, 22, 35, 57, 57, 51, 109, 114, 101, 97, 178, 176, 210, 190, 264, 295, 279, 224, 375, 448, 428, 397, 521, 499, 560, 533, 719, 774, 676, 641, 930, 948, 816, 783, 1083, 1147, 1229, 1156, 1227, 1304, 1319, 1093
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Row sums of A049767.
Programs
-
GAP
List([1..50], n-> Sum([1..n], k-> PowerMod(k,2,n) + PowerMod(n,2,k)) ); # G. C. Greubel, Dec 13 2019
-
Magma
[&+[Modexp(k,2,n) + Modexp(n,2,k): k in [1..n]]: n in [1..50]]; // G. C. Greubel, Dec 13 2019
-
Maple
seq(add((k^2 mod n) + (n^2 mod k), k = 1 .. n), n = 1 .. 50); # Petros Hadjicostas, Nov 20 2019
-
Mathematica
Table[Sum[PowerMod[k,2,n] + PowerMod[n,2,k], {k,n}], {n,50}] (* G. C. Greubel, Dec 13 2019 *)
-
PARI
T(n,k) = lift(Mod(k,n)^2) + lift(Mod(n,k)^2); vector(50, n, sum(k=1,n, T(n,k)) ) \\ G. C. Greubel, Dec 13 2019
-
Sage
[sum(power_mod(k,2,n) + power_mod(n,2,k) for k in (1..n)) for n in (1..50)] # G. C. Greubel, Dec 13 2019