cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049768 a(n) = Sum_{k = 1..n} T(n,k), where array T is A049767.

Original entry on oeis.org

0, 1, 3, 3, 13, 14, 22, 22, 35, 57, 57, 51, 109, 114, 101, 97, 178, 176, 210, 190, 264, 295, 279, 224, 375, 448, 428, 397, 521, 499, 560, 533, 719, 774, 676, 641, 930, 948, 816, 783, 1083, 1147, 1229, 1156, 1227, 1304, 1319, 1093
Offset: 1

Views

Author

Keywords

Crossrefs

Row sums of A049767.

Programs

  • GAP
    List([1..50], n-> Sum([1..n], k-> PowerMod(k,2,n) + PowerMod(n,2,k)) ); # G. C. Greubel, Dec 13 2019
  • Magma
    [&+[Modexp(k,2,n) + Modexp(n,2,k): k in [1..n]]: n in [1..50]]; // G. C. Greubel, Dec 13 2019
    
  • Maple
    seq(add((k^2 mod n) + (n^2 mod k), k = 1 .. n), n = 1 .. 50); # Petros Hadjicostas, Nov 20 2019
  • Mathematica
    Table[Sum[PowerMod[k,2,n] + PowerMod[n,2,k], {k,n}], {n,50}] (* G. C. Greubel, Dec 13 2019 *)
  • PARI
    T(n,k) = lift(Mod(k,n)^2) + lift(Mod(n,k)^2);
    vector(50, n, sum(k=1,n, T(n,k)) ) \\ G. C. Greubel, Dec 13 2019
    
  • Sage
    [sum(power_mod(k,2,n) + power_mod(n,2,k) for k in (1..n)) for n in (1..50)] # G. C. Greubel, Dec 13 2019