A049767 Triangular array T, read by rows: T(n,k) = (k^2 mod n) + (n^2 mod k), for k = 1..n and n >= 1.
0, 1, 0, 1, 2, 0, 1, 0, 2, 0, 1, 5, 5, 2, 0, 1, 4, 3, 4, 2, 0, 1, 5, 3, 3, 8, 2, 0, 1, 4, 2, 0, 5, 8, 2, 0, 1, 5, 0, 8, 8, 3, 8, 2, 0, 1, 4, 10, 6, 5, 10, 11, 8, 2, 0, 1, 5, 10, 6, 4, 4, 7, 10, 8, 2, 0, 1, 4, 9, 4, 5, 0, 5, 4, 9, 8, 2, 0, 1, 5, 10, 4
Offset: 1
Examples
Triangle T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows: 0; 1, 0; 1, 2, 0; 1, 0, 2, 0; 1, 5, 5, 2, 0; 1, 4, 3, 4, 2, 0; 1, 5, 3, 3, 8, 2, 0; 1, 4, 2, 0, 5, 8, 2, 0; 1, 5, 0, 8, 8, 3, 8, 2, 0; 1, 4, 10, 6, 5, 10, 11, 8, 2, 0; ...
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
GAP
Flat(List([1..15], n-> List([1..n], k-> PowerMod(k,2,n) + PowerMod(n,2,k) ))); # G. C. Greubel, Dec 13 2019
-
Magma
[[Modexp(k,2,n) + Modexp(n,2,k): k in [1..n]]: n in [1..15]]; // G. C. Greubel, Dec 13 2019
-
Maple
seq(seq( `mod`(k^2, n) + `mod`(n^2, k), k = 1..n), n = 1..15); # G. C. Greubel, Dec 13 2019
-
Mathematica
Table[PowerMod[k,2,n] + PowerMod[n,2,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Dec 13 2019 *)
-
PARI
T(n,k) = lift(Mod(k,n)^2) + lift(Mod(n,k)^2); for(n=1,15, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 13 2019
-
Sage
[[power_mod(k,2,n) + power_mod(n,2,k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Dec 13 2019