A049769 Triangular array T read by rows: T(n,k) = (k^3 mod n) + (n^3 mod k).
0, 1, 0, 1, 3, 0, 1, 0, 4, 0, 1, 4, 4, 5, 0, 1, 2, 3, 4, 6, 0, 1, 2, 7, 4, 9, 7, 0, 1, 0, 5, 0, 7, 2, 8, 0, 1, 9, 0, 2, 12, 3, 2, 9, 0, 1, 8, 8, 4, 5, 10, 9, 2, 10, 0, 1, 9, 7, 12, 5, 12, 3, 9, 11, 11, 0, 1, 8, 3, 4, 8, 0, 13, 8, 9, 12, 12, 0
Offset: 1
Examples
Triangle begins as: 0; 1, 0; 1, 3, 0; 1, 0, 4, 0; 1, 4, 4, 5, 0; 1, 2, 3, 4, 6, 0; 1, 2, 7, 4, 9, 7, 0; 1, 0, 5, 0, 7, 2, 8, 0;
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
GAP
Flat(List([1..15], n-> List([1..n], k-> PowerMod(k,3,n) + PowerMod(n,3,k) ))); # G. C. Greubel, Dec 13 2019
-
Magma
[[Modexp(k,3,n) + Modexp(n,3,k): k in [1..n]]: n in [1..15]]; // G. C. Greubel, Dec 13 2019
-
Maple
seq(seq( `mod`(k^3, n) + `mod`(n^3, k), k = 1..n), n = 1..15); # G. C. Greubel, Dec 13 2019
-
Mathematica
Table[PowerMod[k,3,n] + PowerMod[n,3,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Dec 13 2019 *)
-
PARI
T(n,k) = lift(Mod(k,n)^3) + lift(Mod(n,k)^3); for(n=1,15, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 13 2019
-
Sage
[[power_mod(k,3,n) + power_mod(n,3,k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Dec 13 2019