A049773 Triangular array T read by rows: if row n is r(1),...,r(m), then row n+1 is 2r(1)-1,...,2r(m)-1,2r(1),...,2r(m).
1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 7, 2, 6, 4, 8, 1, 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16, 1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31, 2, 18, 10, 26, 6, 22, 14, 30, 4, 20, 12, 28, 8, 24, 16, 32, 1, 33, 17, 49, 9, 41, 25, 57, 5, 37, 21, 53, 13, 45, 29, 61, 3, 35, 19
Offset: 1
Examples
Triangle begins: 1; 1, 2; 1, 3, 2, 4; 1, 5, 3, 7, 2, 6, 4, 8; 1, 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16; 1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31, 2, 18, 10, 26, ...
Links
- Alois P. Heinz, Rows n = 1..13, flattened
- Eric Weisstein's World of Mathematics, Nonaveraging Sequence.
- Wikipedia, Arithmetic progression.
- Wikipedia, Bracket (tournament).
- Index entries related to non-averaging sequences.
Crossrefs
Programs
-
Haskell
a049773 n k = a049773_tabf !! (n-1) !! (k-1) a049773_row n = a049773_tabf !! (n-1) a049773_tabf = iterate f [1] where f vs = (map (subtract 1) ws) ++ ws where ws = map (* 2) vs -- Reinhard Zumkeller, Mar 14 2015
-
Maple
T:= proc(n) option remember; `if`(n=1, 1, [map(x->2*x-1, [T(n-1)])[], map(x->2*x, [T(n-1)])[]][]) end: seq(T(n), n=1..7); # Alois P. Heinz, Oct 28 2011
-
Mathematica
row[1] = {1}; row[n_] := row[n] = Join[ 2*row[n-1] - 1, 2*row[n-1] ]; Flatten[ Table[ row[n], {n, 1, 7}]] (* Jean-François Alcover, May 03 2012 *)
-
PARI
(a(n, k) = if( k<=0 || k>=n, 0, if( k%2, n\2) + a(n\2, k\2))); {T(n, k) = if( k<=0 || k>2^n/2, 0, 1 + a(2^n/2, k-1))}; /* Michael Somos, Oct 13 1999 */
Comments