cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049778 a(n) = Sum_{k=1..floor((n+1)/2)} T(n,2k-1), array T as in A049777.

Original entry on oeis.org

1, 3, 9, 17, 32, 50, 78, 110, 155, 205, 271, 343, 434, 532, 652, 780, 933, 1095, 1285, 1485, 1716, 1958, 2234, 2522, 2847, 3185, 3563, 3955, 4390, 4840, 5336, 5848, 6409, 6987, 7617, 8265, 8968, 9690, 10470, 11270, 12131
Offset: 1

Views

Author

Keywords

Comments

Principal diagonal of the convolution array A213849. - Clark Kimberling, Jul 04 2012

Crossrefs

Programs

  • GAP
    List([1..50], n-> (3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48); # G. C. Greubel, Dec 12 2019
  • Magma
    [(3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48: n in [1..50]]; // G. C. Greubel, Dec 12 2019
    
  • Maple
    seq( (3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48, n=1..50); # G. C. Greubel, Dec 12 2019
  • Mathematica
    Table[Floor[(n+1)/2]*(3*(n-1)*(n+2) -(1+Floor[(n+1)/2])*(4*Floor[(n+1)/2]-7))/6, {n,50}] (* G. C. Greubel, Dec 12 2019 *)
  • PARI
    vector(50, n, (3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48) \\ G. C. Greubel, Dec 12 2019
    
  • Sage
    [(3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48 for n in (1..50)] # G. C. Greubel, Dec 12 2019
    

Formula

G.f.: x*(1 + x + 2*x^2)/((1-x)^4*(1+x)^2). Pairwise sums of A023855. - Ralf Stephan, May 06 2004
a(n) = Sum_{k=1..n} k*ceiling(k/2). - Vladeta Jovovic, Apr 29 2006
Row sums of triangle A095800^2. - Gary W. Adamson, Dec 12 2007
a(n) = (3 + 10*n + 18*n^2 + 8*n^3 - 3*(-1)^n*(1 + 2*n))/48. - R. J. Mathar, Mar 03 2011
From G. C. Greubel, Dec 12 2019: (Start)
a(n) = m*(3*(n-1)*(n+2) - (m+1)*(4*m-7))/6, where m = floor((n+1)/2).
E.g.f.: ( (3+36*x+42*x^2+8*x^3)*exp(x) - 3*(1-2*x)*exp(-x) )/48. (End)