cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049779 a(n) = Sum_{k=1..floor(n/2)} T(n, 2k), array T as in A049777.

Original entry on oeis.org

2, 5, 13, 23, 41, 62, 94, 130, 180, 235, 307, 385, 483, 588, 716, 852, 1014, 1185, 1385, 1595, 1837, 2090, 2378, 2678, 3016, 3367, 3759, 4165, 4615, 5080, 5592, 6120, 6698, 7293, 7941, 8607, 9329, 10070, 10870, 11690, 12572, 13475, 14443, 15433
Offset: 2

Views

Author

Keywords

Comments

a(n) is coefficient of x^2 in -Product_{j=1..n} (1 + (-1)^j*j*x). - Robert Israel, Jun 08 2015

Programs

  • GAP
    List([2..50], n-> (8*n^3 +6*n^2 -2*n -3 +3*(-1)^n*(2*n+1))/48); # G. C. Greubel, Dec 12 2019
  • MATLAB
    a = @(n) 1/4*(n*(n+1)*(4*n-1)/6 + (-1)^n*floor((n+1)/2)); % Néstor Jofré, Apr 24 2017
    
  • Magma
    [n^3/6+n^2/8-n/24-1/16+(-1)^n*(n/8+1/16): n in [2..50]]; // Vincenzo Librandi, Apr 25 2017
    
  • Maple
    seq( (8*n^3 +6*n^2 -2*n -3 +3*(-1)^n*(2*n+1))/48, n=2..50); # G. C. Greubel, Dec 12 2019
  • Mathematica
    T[m_, n_]:=(m+n)(m-n+1)/2; Table[Sum[T[n, 2k], {k, Floor[n/2]}], {n, 2, 50}] (* Indranil Ghosh, Apr 24 2017 *)
    LinearRecurrence[{2, 1, -4, 1, 2, -1}, {2, 5, 13, 23, 41, 62}, 50] (* Vincenzo Librandi, Apr 25 2017 *)
  • PARI
    a(n)=(4*n^3 + 3*n^2 + 2*n - if(n%2,6*n+3))/24 \\ Charles R Greathouse IV, Jun 08 2015
    
  • Sage
    [(8*n^3 +6*n^2 -2*n -3 +3*(-1)^n*(2*n+1))/48 for n in (2..50)] # G. C. Greubel, Dec 12 2019
    

Formula

G.f.: x^2*(2+x+x^2)/((1-x)^4*(1+x)^2). Pairwise sums of A023856. - Ralf Stephan, May 06 2004
a(n) = Sum_{k=1..n} k*floor(k/2). - Vladeta Jovovic, Apr 29 2006
a(n) = (8*n^3 + 6*n^2 - 2*n - 3 + 3*(-1)^n *(2*n+1))/48. - Robert Israel, Jun 08 2015
a(n) = (n*(n+1)*(4*n-1) + 6*(-1)^n*floor((n+1)/2))/24. - Néstor Jofré, Apr 24 2017
E.g.f.: ( (8*x^3 + 30*x^2 + 12*x - 3)*exp(x) + 3*(1-2*x)*exp(-x) )/48. - G. C. Greubel, Dec 12 2019

Extensions

More terms from Ralf Stephan, May 06 2004