A049804 a(n) = n mod 4 + n mod 16 + ... + n mod 4^k, where 4^k <= n < 4^(k+1).
0, 0, 0, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 2, 4, 6, 4, 6, 8, 10, 8, 10, 12, 14, 12, 14, 16, 18, 0, 2, 4, 6, 4, 6, 8, 10, 8, 10, 12, 14, 12, 14, 16, 18, 0, 2, 4, 6, 4, 6, 8, 10, 8, 10, 12, 14, 12, 14, 16, 18, 0, 3, 6, 9, 8, 11, 14, 17, 16, 19, 22
Offset: 1
Keywords
Links
- Metin Sariyar, Table of n, a(n) for n = 1..32000
- B. Dearden, J. Iiams, and J. Metzger, A Function Related to the Rumor Sequence Conjecture, J. Int. Seq. 14 (2011), #11.2.3, Example 7.
Programs
-
Maple
a:= n-> add(irem(n, 4^j), j=1..ilog[4](n)): seq(a(n), n=1..105); # Petros Hadjicostas, Dec 13 2019 (after Alois P. Heinz's program for A330358)
-
Mathematica
Table[n * Floor@Log[4, n] - Sum[Floor[n*4^-k]*4^k, {k, Log[4, n]}], {n, 100}] (* Metin Sariyar, Dec 12 2019 *) a[n_] := Sum[Mod[n, 4^j], {j, 1, Length[IntegerDigits[n, 4]] - 1}]; Array[a, 105] (* Jean-François Alcover, Dec 31 2021 *)
-
PARI
a(n) = sum(k=1, logint(n, 4), n % 4^k); \\ Michel Marcus, Dec 12 2019
Formula
From Petros Hadjicostas, Dec 11 2019: (Start)
Conjecture: a(4*n+r) = 4*a(n) + r*A110591(n) = 4*a(n) + r*(floor(log_4(n)) + 1) for n >= 1 and r = 0, 1, 2, 3.
If the conjecture above is true, the g.f. A(x) satisfies A(x) = 4*(1 + x + x^2 + x^3)*A(x^4) + x*(1 + 2*x + 3*x^2)/(1 - x^4) * Sum_{k >= 1} x^(4^k). (End)
Comments