cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A050013 a(n) = position of n in A050012.

Original entry on oeis.org

1, 7, 3, 21, 6, 13, 2, 39, 20, 5, 126, 12, 179, 8, 194, 38, 171, 19, 110, 205, 4, 125, 220, 11, 102, 178, 273, 22, 117, 193, 269, 37, 94, 170, 208, 18, 33, 109, 166, 204, 261, 14, 67, 124, 162, 219, 257, 295, 10, 101, 139, 177, 215, 272, 291, 40, 78, 116, 154
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A050012.

A050014 Numbers k such that A050012(k) < A050012(k+1).

Original entry on oeis.org

1, 3, 7, 8, 13, 14, 21, 22, 23, 28, 33, 39, 40, 41, 42, 51, 55, 58, 61, 67, 68, 72, 78, 81, 84, 88, 94, 95, 102, 104, 110, 111, 117, 118, 126, 127, 131, 134, 139, 142, 145, 149, 154, 157, 162, 166, 171, 172, 179, 180, 184, 188, 194
Offset: 1

Views

Author

Keywords

A050015 Numbers k such that b(k) > b(k+1), where b=A050012.

Original entry on oeis.org

2, 4, 5, 6, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 56, 57, 59, 60, 62, 63, 64, 65, 66, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 82, 83, 85, 86
Offset: 1

Views

Author

Keywords

A050000 a(n) = floor(a(n-1)/2) if this is not among 0, a(1), ..., a(n-2); otherwise a(n) = 3*a(n-1).

Original entry on oeis.org

1, 3, 9, 4, 2, 6, 18, 54, 27, 13, 39, 19, 57, 28, 14, 7, 21, 10, 5, 15, 45, 22, 11, 33, 16, 8, 24, 12, 36, 108, 324, 162, 81, 40, 20, 60, 30, 90, 270, 135, 67, 201, 100, 50, 25, 75, 37, 111, 55, 165, 82, 41, 123, 61, 183, 91, 273, 136, 68
Offset: 1

Views

Author

Keywords

Comments

This permutation of the natural numbers is the multiply-and-divide (MD) sequence for (M,D)=(3,2). The "MD question" is this: for relatively prime M and D, does the MD sequence contain every positive integer exactly once? An affirmative proof for the more general condition that log base D of M is irrational is given by Mateusz Kwaśnicki in Crux Mathematicorum 30 (2004) 235-239. - Clark Kimberling, Jun 30 2004

Crossrefs

Cf. A050076, A050001 (inverse).
MD sequences:
A050076 (2,3), A050124 (2,5),
this sequence (3,2), A050104 (3,4),
A050080 (4,3),
A050004 (5,2), A050084 (5,3), A050108 (5,4),
A050008 (6,2), A050088 (6,3), A050112 (6,4),
A050012 (7,2), A050092 (7,3),
A050096 (8,3),
A050016 (9,2),
A050020 (10,2), A050100 (10,3).

Programs

  • Haskell
    a050000 n = a050000_list !! (n-1)
    a050000_list = 1 : f [1,0] where
       f xs'@(x:xs) | x `div` 2 `elem` xs = 3 * x : f (3 * x : xs')
                    | otherwise = x `div` 2 : f (x `div` 2 : xs')
    -- Reinhard Zumkeller, Nov 13 2011
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = (b = Floor[a[n-1]/2]; If[FreeQ[Table[ a[k], {k, 0, n-2}], b], b, 3*a[n-1]]);
    Array[a, 60] (* Jean-François Alcover, Jul 13 2016 *)

A090300 a(n) = 14*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 14.

Original entry on oeis.org

2, 14, 198, 2786, 39202, 551614, 7761798, 109216786, 1536796802, 21624372014, 304278004998, 4281516441986, 60245508192802, 847718631141214, 11928306344169798, 167844007449518386, 2361744410637427202
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004

Keywords

Comments

a(n+1)/a(n) converges to (7+sqrt(50)) = 14.071067811...
Lim_{n->infinity} a(n)/a(n+1) = 0.071067811... = 1/(7+sqrt(50)) = sqrt(50) - 7.
Lim_{n->infinity} a(n+1)/a(n) = 14.071067811... = (7+sqrt(50)) = 1/(sqrt(50) - 7).

Examples

			a(4) = 39202 = 14*a(3) + a(2) = 14*2786 + 198 = (7+sqrt(50))^4 + (7-sqrt(50))^4 = 39201.999974491 + 0.000025508 = 39202.
		

Crossrefs

Cf. A050012.

Programs

  • Mathematica
    LinearRecurrence[{14,1},{2,14},20] (* Harvey P. Dale, Jul 12 2020 *)

Formula

a(n) = 14*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 14.
a(n) = (7+sqrt(50))^n + (7-sqrt(50))^n.
(a(n))^2 = a(2n)-2 if n = 1, 3, 5, ...; (a(n))^2 = a(2n)+2 if n = 2, 4, 6, ....
G.f.: (2-14*x)/(1-14*x-x^2). - Philippe Deléham, Nov 02 2008

Extensions

More terms from Ray Chandler, Feb 14 2004
Showing 1-5 of 5 results.