A096118 Duplicate of A050029.
1, 1, 2, 3, 4, 7, 9, 10, 11, 21, 30, 37, 41, 44, 46, 47, 48, 95, 141, 185, 226, 263, 293, 314
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
From _Petros Hadjicostas_, Nov 13 2019: (Start) We explain _Amarnath Murthy_'s process (see the Comments above). a(3) = a(2) + a(1) = 3. [Now a(3) is the last term available.] a(4) = a(3) + a(2) = 5. a(5) = a(3) + a(2) + a(1) = 6. [Now a(5) is the last term available.] a(6) = a(5) + a(4) = 11. a(7) = a(5) + a(4) + a(3) = 14. a(8) = a(5) + a(4) + a(3) + a(2) = 16. a(9) = a(5) + ... + a(1) = 17. [Now a(9) is the last term available.] a(10) = a(9) + a(8) = 33. a(11) = a(9) + a(8) + a(7) = 47. ... a(17) = a(9) + a(8) + ... + a(1) = 75. [Now a(17) is the last term available.] a(18) = a(17) + a(16) = 149. (End)
a := proc(n) option remember; `if`(n < 3, [1, 2][n], a(n - 1) + a(2^ceil(log[2](n - 1)) + 2 - n)); end proc; seq(a(n), n = 1..50); # Petros Hadjicostas, Nov 13 2019
Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 2, 3}, Flatten@Table[k, {n, 5}, {k, 2^n, 1, -1}]] (* Ivan Neretin, Sep 07 2015 *)
a := proc(n) option remember; `if`(n < 3, [1, 3][n], a(n - 1) + a(Bits:-Iff(n - 2, n - 2) + 3 - n)); end proc; seq(a(n), n = 1 .. 48); # Petros Hadjicostas, Nov 08 2019
Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 3, 4}, Flatten@Table[k, {n, 5}, {k, 2^n, 1, -1}]] (* Ivan Neretin, Sep 08 2015 *)
a := proc(n) option remember; `if`(n < 4, [1, 1, 3][n], a(n - 1) + a(2^ceil(log[2](n - 1)) + 2 - n)); end proc; seq(a(n), n = 1 .. 48); # Petros Hadjicostas, Nov 08 2019
Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 1, 3}, Flatten@Table[k, {n, 5}, {k, 2^n, 1, -1}]] (* Ivan Neretin, Sep 07 2015 *)
a := proc(n) option remember; `if`(n < 4, [1, 1, 4][n], a(n - 1) + a(2^ceil(log[2](n - 1)) + 2 - n)); end proc; seq(a(n), n = 1 .. 48); # Petros Hadjicostas, Nov 08 2019
Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 1, 4}, Flatten@Table[k, {n, 5}, {k, 2^n, 1, -1}]] (* Ivan Neretin, Sep 07 2015 *)
a := proc(n) option remember; `if`(n < 4, [1, 2, 1][n], a(n - 1) + a(2^ceil(log[2](n - 1)) + 2 - n)); end proc; seq(a(n), n = 1..50); # Petros Hadjicostas, Nov 11 2019
Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 2, 1}, Flatten@Table[k, {n, 5}, {k, 2^n, 1, -1}]] (* Ivan Neretin, Sep 07 2015 *)
a := proc(n) option remember; `if`(n < 4, [1, 2, 2][n], a(n - 1) + a(2^ceil(log[2](n - 1)) + 2 - n)): end proc: seq(a(n), n = 1..60); # Petros Hadjicostas, Nov 14 2019
Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 2, 2}, Flatten@Table[k, {n, 5}, {k, 2^n, 1, -1}]] (* Ivan Neretin, Sep 07 2015 *)
a := proc(n) option remember; `if`(n < 4, [1, 2, 4][n], a(n - 1) + a(2^ceil(log[2](n - 1)) + 2 - n)); end proc; seq(a(n), n = 1 .. 48); # Petros Hadjicostas, Nov 09 2019
Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 2, 4}, Flatten@Table[k, {n, 5}, {k, 2^n, 1, -1}]] (* Ivan Neretin, Sep 08 2015 *)
a := proc(n) option remember; `if`(n < 4, [1, 3, 1][n], a(n - 1) + a(Bits:-Iff(n - 2, n - 2) + 3 - n)); end proc; seq(a(n), n = 1..48); # Petros Hadjicostas, Nov 08 2019
Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 3, 1}, Flatten@Table[k, {n, 5}, {k, 2^n, 1, -1}]] (* Ivan Neretin, Sep 08 2015 *)
Comments