A050035 a(n) = a(n-1) + a(m) for n >= 4, where m = 2*n - 2 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 3.
1, 1, 3, 4, 8, 9, 13, 22, 44, 45, 49, 58, 80, 125, 183, 308, 616, 617, 621, 630, 652, 697, 755, 880, 1188, 1805, 2435, 3132, 4012, 5817, 8949, 14766, 29532, 29533, 29537, 29546, 29568, 29613, 29671, 29796, 30104, 30721, 31351
Offset: 1
Keywords
Links
- Ivan Neretin, Table of n, a(n) for n = 1..8193
Crossrefs
Programs
-
Mathematica
Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 1, 3}, Flatten@Table[2 k, {n, 5}, {k, 2^n}]] (* Ivan Neretin, Sep 06 2015 *)
-
PARI
lista(nn) = {nn = max(nn, 3); my(va = vector(nn)); va[1] = 1; va[2] = 1; va[3] = 3; for(n=4, nn, va[n] = va[n-1] + va[2*(n - 1 - 2^logint(n-2, 2))]); va; } \\ Petros Hadjicostas, May 15 2020
Extensions
Name edited by Petros Hadjicostas, May 15 2020