A050187 a(n) = n * floor((n-1)/2).
0, 0, 0, 3, 4, 10, 12, 21, 24, 36, 40, 55, 60, 78, 84, 105, 112, 136, 144, 171, 180, 210, 220, 253, 264, 300, 312, 351, 364, 406, 420, 465, 480, 528, 544, 595, 612, 666, 684, 741, 760, 820, 840, 903, 924, 990, 1012, 1081, 1104, 1176
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Magma
[n*Floor((n-1)/2): n in [0..50]]; // Wesley Ivan Hurt, May 24 2014
-
Maple
A050187:=n->n*floor((n-1)/2); seq(A050187(n), n=0..100); # Wesley Ivan Hurt, Nov 23 2013
-
Mathematica
Table[n*Floor[(n-1)/2], {n,0,100}] (* Wesley Ivan Hurt, Nov 23 2013 *)
Formula
a(n) = n * floor((n-1)/2).
From R. J. Mathar, Aug 08 2009: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: x^3*(3+x) / ((1+x)^2*(1-x)^3). (End)
a(n) = binomial(n,2) - (n/2) * ((n+1) mod 2). - Wesley Ivan Hurt, Nov 23 2013
E.g.f.: x*(x*cosh(x) + sinh(x)*(x - 1))/2. - Stefano Spezia, Nov 02 2020
Extensions
Name change by Wesley Ivan Hurt, Nov 23 2013
Comments