A050213 Triangle of number of permutations of {1, 2, ..., n} having exactly k cycles, each of which is of length >=r for r=5.
24, 120, 720, 5040, 40320, 362880, 72576, 3628800, 1330560, 39916800, 20338560, 479001600, 303937920, 6227020800, 4643084160, 87178291200, 73721007360, 1743565824, 1307674368000, 1224694598400, 69742632960, 20922789888000
Offset: 5
Examples
Triangle begins: 05: 24; 06: 120; 07: 720; 08: 5040; 09: 40320; 10: 362880, 72576; 11: 3628800, 1330560; 12: 39916800, 20338560;
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 257.
Links
- Alois P. Heinz, Rows n = 5..300, flattened
- Eric Weisstein's World of Mathematics, Permutation Cycle.
Programs
-
Maple
b:= proc(n) option remember; expand(`if`(n=0, 1, add( b(n-i)*x*binomial(n-1, i-1)*(i-1)!, i=5..n))) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)): seq(T(n), n=5..20); # Alois P. Heinz, Sep 25 2016
-
Mathematica
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[b[n - i]*x*Binomial[n - 1, i - 1]* (i - 1)!, {i, 5, n}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][ b[n]]; T /@ Range[5, 20] // Flatten (* Jean-François Alcover, Dec 08 2019, after Alois P. Heinz *)
Extensions
Offset changed from 1 to 5 by Alois P. Heinz, Sep 25 2016
Comments