cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050226 Numbers m such that m divides Sum_{k = 1..m} A000005(k).

Original entry on oeis.org

1, 4, 5, 15, 42, 44, 47, 121, 336, 340, 347, 930, 2548, 6937, 6947, 51322, 379097, 379131, 379133, 2801205, 20698345, 56264090, 56264197, 152941920, 152942012, 8350344420, 61701166395, 455913379395, 455913379831, 1239301050694, 3368769533660, 3368769533812
Offset: 1

Views

Author

Labos Elemer, Dec 20 1999

Keywords

Examples

			For k = 15 the sum is 1 + 2 + 2 + 3 + 2 + 4 + 2 + 4 + 3 + 4 + 2 + 6 + 2 + 4 + 4 = 45 which is divisible by 15.
		

References

  • Julian Havil, "Gamma: Exploring Euler's Constant", Princeton University Press, Princeton and Oxford, pp. 112-113, 2003.

Crossrefs

Programs

  • Mathematica
    s = 0; Do[ s = s + DivisorSigma[ 0, n ]; If[ Mod[ s, n ] == 0, Print[ n ] ], {n, 1, 2*10^9} ]
    k=10^6; a[1]=1;a[n_]:=a[n]=DivisorSigma[0,n]+a[n-1]; nd=a/@Range@k; Select[Range@k,Divisible[nd[[#]],#]&] (* Ivan N. Ianakiev, Apr 30 2016 *)
    Module[{nn=400000},Select[Thread[{Range[nn],Accumulate[DivisorSigma[0,Range[nn]]]}],Divisible[#[[2]],#[[1]]]&]][[All,1]] (* The program generates the first 19 terms of the sequence. To generate more, increase the nn constant. *) (* Harvey P. Dale, Jul 03 2022 *)
  • PARI
    lista(nn) = {my(s = 0); for (n=1, nn, s += numdiv(n); if (!(s % n), print1(n, ", ")););} \\ Michel Marcus, Dec 14 2015
    
  • Sage
    def A050226_list(len):
        a, L = 0, []
        for n in (1..len):
            a += sigma(n,0)
            if n.divides(a): L.append(n)
        return L
    A050226_list(10000) # Peter Luschny, Dec 18 2015

Formula

m is in the sequence if Sum_{i = 1..m} d(i) = m*k, k an integer, where d(i) = number of divisors of i.

Extensions

More terms from Robert G. Wilson v, Sep 21 2000
Further terms from Naohiro Nomoto, Aug 03 2001
a(26)-a(30) from Donovan Johnson, Dec 21 2008