A050229 Numbers k such that for any x in 1..k-1 there exists a y in 0..k-2 such that x^2 == 2^y (mod k).
1, 2, 3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 149, 163, 173, 179, 181, 197, 211, 227, 269, 293, 317, 347, 349, 373, 379, 389, 419, 421, 443, 461, 467, 491, 509, 523, 541, 547, 557, 563, 587, 613, 619, 653, 659, 661, 677, 701, 709, 757, 773, 787, 797, 821, 827, 829, 853, 859, 877, 883, 907, 941, 947
Offset: 1
Keywords
Examples
The set of values for x^2 mod 19, 1<=x<=18, is P=[1, 4, 9, 16, 6, 17, 11, 7, 5, 5, 7, 11, 17, 6, 16, 9, 4, 1], the set of values for 2^y mod 19, 0<=y<=n-2 is Q= [1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10] which contains all values in P, hence 19 is in the sequence.
Programs
-
PARI
for(n=1,450,if(sum(y=1,n-1,if(setsearch(Set(vector(n-1,x,2^(x-1)%n)),y),0,1))==0,print1(n,",")))
Formula
a(n) = A071642(n) + 1. - Arkadiusz Wesolowski, Nov 20 2012
Extensions
More terms from R. H. Hardin, Dec 28 2007
Comments