A050251 Number of palindromic primes less than 10^n.
0, 4, 5, 20, 20, 113, 113, 781, 781, 5953, 5953, 47995, 47995, 401696, 401696, 3438339, 3438339, 30483565, 30483565, 269577430, 269577430, 2427668363, 2427668363, 22170468927, 22170468927, 202985860292, 202985860292
Offset: 0
Links
- Patrick De Geest, World!Of Palindromic Primes, Page 1
- Shyam Sunder Gupta, Palindromic Primes up to 10^19.
- Shyam Sunder Gupta, Palindromic Primes up to 10^23.
- Shyam Sunder Gupta, Palindromic Primes up to 10^25.
- Eric Weisstein's World of Mathematics, Palindromic Prime.
- Index entries for sequences related to numbers of primes in various ranges
Programs
-
Python
from _future_ import division from sympy import isprime def paloddgen(l,b=10): # generator of odd-length palindromes in base b of length <= 2*l if l > 0: yield 0 for x in range(1,l+1): n = b**(x-1) n2 = n*b for y in range(n,n2): k, m = y//b, 0 while k >= b: k, r = divmod(k,b) m = b*m + r yield y*n + b*m + k def A050251(n): if n <= 1: return 4*n else: c = 1 for i in paloddgen((n+1)//2): if isprime(i): c += 1 return c # Chai Wah Wu, Jan 05 2015
Formula
a(n) ~ A070199(n)/log(10^n) = 1/log(10^n)*Sum {k=1..n} 9*10^floor[(k-1)/2]. - Robert G. Wilson v, May 31 2009
a(2n) = a(2n-1) for n > 1. - Chai Wah Wu, Nov 21 2021
Extensions
More terms from Patrick De Geest, Aug 01 1999
2 more terms from Shyam Sunder Gupta, Feb 12 2006
2 more terms from Shyam Sunder Gupta, Mar 13 2009
a(23)-a(24) from Shyam Sunder Gupta, Oct 05 2013
Missing a(0) inserted by Chai Wah Wu, Nov 21 2021
a(25)-a(26) from Shyam Sunder Gupta, Dec 19 2024
Comments