A050259 Numbers n such that 2^n == 3 (mod n).
1, 4700063497, 3468371109448915, 8365386194032363, 10991007971508067
Offset: 1
References
- R. Daniel Mauldin and S. M. Ulam, Mathematical problems and games. Adv. in Appl. Math. 8 (1987), pp. 281-344.
Links
- Joe K. Crump, 2^n mod n
- R. K. Guy, The Strong Law of Small Numbers, Amer. Math. Monthly 95 (1988), pp. 697-712. See example 13.
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, 2
- OEIS Wiki, 2^n mod n
Programs
-
Mathematica
m = 2; Join[Select[Range[m], Divisible[2^# - m, #] &], Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)
-
PARI
is(n)=Mod(2,n)^n==3 \\ Charles R Greathouse IV, Jun 11 2015
Comments