cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050295 Number of strongly triple-free subsets of {1, 2, ..., n}.

Original entry on oeis.org

1, 2, 3, 5, 8, 16, 24, 48, 76, 132, 198, 396, 588, 1176, 1764, 2940, 4680, 9360, 13680, 27360, 43776, 72960, 109440, 218880, 330240, 660480, 990720, 1693440, 2709504, 5419008, 8128512, 16257024, 25823232, 43038720, 64558080, 129116160, 194365440, 388730880
Offset: 0

Views

Author

Keywords

Comments

A set S is strongly triple-free if x in S implies 2x not in S and 3x not in S.
Conjecture: for k=1,2,3,..., a(6k+1)=2a(6k) and a(6k+5)=2a(6k+4) (these relations hold through a(35)). - John W. Layman, Jun 22 2002
From Pradhan Prashanth Kumar (pradhan.ptr(AT)gmail.com), Feb 03 2008:
The conjecture is true. Proof:
Let b(6k+1) = Number of strongly triple-free subsets of {1,2,...,6k+1} which do not contain 6k+1 and c(6k+1) = Number of strongly triple-free subsets of {1,2,...,6k+1} which contain 6k+1. Now a(6k+1) = b(6k+1) + c(6k+1) and b(6k+1) = a(6k).
1) c(6k+1)<=a(6k) : Take any strongly triple-free subset of {1,2,..,6k+1}, which contains 6k+1 and delete 6k+1. The new set is a subset of {1,2,...,6k} and is trongly triple-free. Hence c(6k+1)<=a(6k).
2) c(6k+1)>=a(6k) : Take any strongly triple-free subset of {1,2,...,6k}. Add 6k+1 to it. Since 6k+1 is not divisible by 2 or 3, this new set is still strongly triple-free. Hence c(6k+1)>=a(6k).
This shows that c(6k+1) = a(6k) and therefore a(6k+1) = b(6k+1)+c(6k+1) = 2a(6k). QED
Another proof for the conjecture: a(6k+r) = 2a(6k+r-1) when r={1,5} (with a(0)=1) would be: Any positive integer of form (6k+1) or (6k+5) is neither divisible by 2 nor by 3. Hence adding the number (6k+1) or (6k+5) to the each strongly triple-free subset of {1, ..., 6k} or {1, ..., 6k+4} does not violate the property and hence we would have 2a(6k) or 2a(6k+4) such subsets for a(6k+1) or a(6k+5). - Ramasamy Chandramouli, Aug 30 2008
A068060 is the weakly triple-free analog of this sequence. - Steven Finch, Mar 02 2009

Crossrefs

Extensions

More terms from John W. Layman, Jun 22 2002
a(0)=1 prepended by Alois P. Heinz, Jan 17 2019