A050342 Expansion of Product_{m>=1} (1+x^m)^A000009(m).
1, 1, 1, 3, 4, 7, 12, 19, 30, 49, 77, 119, 186, 286, 438, 670, 1014, 1528, 2300, 3437, 5119, 7603, 11241, 16564, 24343, 35650, 52058, 75820, 110115, 159510, 230522, 332324, 477994, 686044, 982519, 1404243, 2003063, 2851720, 4052429, 5748440, 8140007, 11507125
Offset: 0
Keywords
Examples
4=(4)=(3)+(1)=(3+1)=(2+1)+(1). From _Gus Wiseman_, Oct 11 2018: (Start) a(n) is the number of set systems (sets of sets) whose multiset union is an integer partition of n. For example, the a(1) = 1 through a(6) = 12 set systems are: {{1}} {{2}} {{3}} {{4}} {{5}} {{6}} {{1,2}} {{1,3}} {{1,4}} {{1,5}} {{1},{2}} {{1},{3}} {{2,3}} {{2,4}} {{1},{1,2}} {{1},{4}} {{1,2,3}} {{2},{3}} {{1},{5}} {{1},{1,3}} {{2},{4}} {{2},{1,2}} {{1},{1,4}} {{1},{2,3}} {{2},{1,3}} {{3},{1,2}} {{1},{2},{3}} {{1},{2},{1,2}} (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..4000
- N. J. A. Sloane, Transforms
Crossrefs
Programs
-
Maple
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, g(n, i-1)+`if`(i>n, 0, g(n-i, i-1)))) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(g(i, i), j)*b(n-i*j, i-1), j=0..n/i))) end: a:= n-> b(n, n): seq(a(n), n=0..50); # Alois P. Heinz, May 19 2013
-
Mathematica
g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, g[n, i-1] + If[i>n, 0, g[n-i, i-1]]]]; b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[g[i, i], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 19 2015, after Alois P. Heinz *) nn=10;Table[SeriesCoefficient[Product[(1+x^k)^PartitionsQ[k],{k,nn}],{x,0,n}],{n,0,nn}] (* Gus Wiseman, Oct 11 2018 *)
Formula
Weigh transform of A000009.
Comments