A089259
Expansion of Product_{m>=1} 1/(1-x^m)^A000009(m).
Original entry on oeis.org
1, 1, 2, 4, 7, 12, 22, 36, 61, 101, 166, 267, 433, 686, 1088, 1709, 2671, 4140, 6403, 9824, 15028, 22864, 34657, 52288, 78646, 117784, 175865, 261657, 388145, 573936, 846377, 1244475, 1825170, 2669776, 3895833, 5671127, 8236945, 11936594, 17261557, 24909756
Offset: 0
From _Gus Wiseman_, Oct 22 2018: (Start)
The a(6) = 22 set multipartitions of integer partitions of 6:
(6) (15) (123) (12)(12) (1)(1)(1)(12) (1)(1)(1)(1)(1)(1)
(24) (1)(14) (1)(1)(13) (1)(1)(1)(1)(2)
(1)(5) (1)(23) (1)(2)(12)
(2)(4) (2)(13) (1)(1)(1)(3)
(3)(3) (3)(12) (1)(1)(2)(2)
(1)(1)(4)
(1)(2)(3)
(2)(2)(2)
(End)
Cf.
A000009,
A001970,
A049311,
A050342,
A056156,
A068006,
A089254,
A116540,
A218153,
A270995,
A296119,
A318360.
-
with(combstruct): A089259:= [H, {H=Set(T, card>=1), T=PowerSet (Sequence (Z, card>=1), card>=1)}, unlabeled]; 1, seq (count (A089259, size=j), j=1..16); # Thomas Wieder, Aug 01 2008
# second Maple program:
with(numtheory):
b:= proc(n, i)
if n<0 or n>i*(i+1)/2 then 0
elif n=0 then 1
elif i<1 then 0
else b(n,i):= b(n-i, i-1) +b(n, i-1)
fi
end:
a:= proc(n) option remember; `if` (n=0, 1,
add(add(d* b(d, d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..100); # Alois P. Heinz, Nov 11 2011
-
max = 40; CoefficientList[Series[Product[1/(1-x^m)^PartitionsQ[m], {m, 1, max}], {x, 0, max}], x] (* Jean-François Alcover, Mar 24 2014 *)
b[n_, i_] := b[n, i] = Which[n<0 || n>i*(i+1)/2, 0, n == 0, 1, i<1, 0, True, b[n-i, i-1] + b[n, i-1]]; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d* b[d, d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 100} ] (* Jean-François Alcover, Feb 13 2016, after Alois P. Heinz *)
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n)={concat([1], EulerT(Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n)) - 1)))} \\ Andrew Howroyd, Oct 26 2018
A304969
Expansion of 1/(1 - Sum_{k>=1} q(k)*x^k), where q(k) = number of partitions of k into distinct parts (A000009).
Original entry on oeis.org
1, 1, 2, 5, 11, 25, 57, 129, 292, 662, 1500, 3398, 7699, 17443, 39519, 89536, 202855, 459593, 1041267, 2359122, 5344889, 12109524, 27435660, 62158961, 140828999, 319065932, 722884274, 1637785870, 3710611298, 8406859805, 19046805534, 43152950024, 97768473163
Offset: 0
From _Gus Wiseman_, Jul 31 2022: (Start)
a(n) is the number of ways to choose a strict integer partition of each part of an integer composition of n. The a(1) = 1 through a(4) = 11 choices are:
((1)) ((2)) ((3)) ((4))
((1)(1)) ((21)) ((31))
((1)(2)) ((1)(3))
((2)(1)) ((2)(2))
((1)(1)(1)) ((3)(1))
((1)(21))
((21)(1))
((1)(1)(2))
((1)(2)(1))
((2)(1)(1))
((1)(1)(1)(1))
(End)
For partitions instead of compositions we have
A270995, non-strict
A063834.
A072233 counts partitions by sum and length.
-
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= proc(n) option remember; `if`(n=0, 1,
add(b(j)*a(n-j), j=1..n))
end:
seq(a(n), n=0..40); # Alois P. Heinz, May 22 2018
-
nmax = 32; CoefficientList[Series[1/(1 - Sum[PartitionsQ[k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 32; CoefficientList[Series[1/(2 - Product[1 + x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 32; CoefficientList[Series[1/(2 - 1/QPochhammer[x, x^2]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[PartitionsQ[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 32}]
A381454
Number of multisets that can be obtained by choosing a strict integer partition of each prime index of n and taking the multiset union.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 4, 2, 2, 1, 5, 1, 6, 2, 2, 3, 8, 1, 3, 4, 1, 2, 10, 2, 12, 1, 3, 5, 4, 1, 15, 6, 4, 2, 18, 2, 22, 3, 2, 8, 27, 1, 3, 3, 5, 4, 32, 1, 6, 2, 6, 10, 38, 2, 46, 12, 2, 1, 8, 3, 54, 5, 8, 4, 64, 1, 76, 15, 3, 6, 6, 4, 89, 2, 1
Offset: 1
The a(25) = 3 multisets are: {3,3}, {1,2,3}, {1,1,2,2}.
Multiset partitions of prime indices:
- For strict multiset partitions with distinct sums (
A321469) see
A381637.
A003963 gives product of prime indices.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
A358914 counts twice-partitions into distinct strict partitions.
Cf.
A000720,
A001222,
A002846,
A005117,
A066328,
A213242,
A213385,
A213427,
A293511,
A299200,
A299201,
A299202,
A300385,
A317142.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@prix[n]]]],{n,100}]
A261049
Expansion of Product_{k>=1} (1+x^k)^(p(k)), where p(k) is the partition function.
Original entry on oeis.org
1, 1, 2, 5, 9, 19, 37, 71, 133, 252, 464, 851, 1547, 2787, 4985, 8862, 15639, 27446, 47909, 83168, 143691, 247109, 423082, 721360, 1225119, 2072762, 3494359, 5870717, 9830702, 16409939, 27309660, 45316753, 74986921, 123748430, 203686778, 334421510, 547735241
Offset: 0
From _Gus Wiseman_, Oct 11 2018: (Start)
The a(1) = 1 through a(5) = 19 strict multiset partitions:
{{1}} {{2}} {{3}} {{4}} {{5}}
{{1,1}} {{1,2}} {{1,3}} {{1,4}}
{{1,1,1}} {{2,2}} {{2,3}}
{{1},{2}} {{1,1,2}} {{1,1,3}}
{{1},{1,1}} {{1},{3}} {{1,2,2}}
{{1,1,1,1}} {{1},{4}}
{{1},{1,2}} {{2},{3}}
{{2},{1,1}} {{1,1,1,2}}
{{1},{1,1,1}} {{1},{1,3}}
{{1},{2,2}}
{{2},{1,2}}
{{3},{1,1}}
{{1,1,1,1,1}}
{{1},{1,1,2}}
{{1,1},{1,2}}
{{2},{1,1,1}}
{{1},{1,1,1,1}}
{{1,1},{1,1,1}}
{{1},{2},{1,1}}
(End)
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
binomial(combinat[numbpart](i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..40); # Alois P. Heinz, Aug 08 2015
-
nmax=40; CoefficientList[Series[Product[(1+x^k)^PartitionsP[k],{k,1,nmax}],{x,0,nmax}],x]
A293243
Numbers that cannot be written as a product of distinct squarefree numbers.
Original entry on oeis.org
4, 8, 9, 16, 24, 25, 27, 32, 40, 48, 49, 54, 56, 64, 72, 80, 81, 88, 96, 104, 108, 112, 121, 125, 128, 135, 136, 144, 152, 160, 162, 169, 176, 184, 189, 192, 200, 208, 216, 224, 232, 240, 243, 248, 250, 256, 272, 288, 289, 296, 297, 304, 320, 324, 328, 336
Offset: 1
120 is not in the sequence because 120 = 2*6*10. 3600 is not in the sequence because 3600 = 2*6*10*30.
Multiset partitions of this type (set of sets) are counted by
A050342.
Twice-partitions of this type (set of sets) are counted by
A279785, see also
A358914.
Partitions of this type are counted by
A382078.
A050320 counts factorizations into squarefree numbers.
A050345 counts factorizations partitioned into into distinct sets.
-
N:= 1000: # to get all terms <= N
A:= Vector(N):
A[1]:= 1:
for n from 2 to N do
if numtheory:-issqrfree(n) then
S:= [$1..N/n]; T:= n*S; A[T]:= A[T]+A[S]
fi;
od:
select(t -> A[t]=0, [$1..N]); # Robert Israel, Oct 10 2017
-
nn=500;
sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
Select[Range[nn],Length[sqfacs[#]]===0&]
A358914
Number of twice-partitions of n into distinct strict partitions.
Original entry on oeis.org
1, 1, 1, 3, 4, 7, 13, 20, 32, 51, 83, 130, 206, 320, 496, 759, 1171, 1786, 2714, 4104, 6193, 9286, 13920, 20737, 30865, 45721, 67632, 99683, 146604, 214865, 314782, 459136, 668867, 972425, 1410458, 2040894, 2950839, 4253713, 6123836, 8801349, 12627079
Offset: 0
The a(1) = 1 through a(6) = 13 twice-partitions:
((1)) ((2)) ((3)) ((4)) ((5)) ((6))
((21)) ((31)) ((32)) ((42))
((2)(1)) ((3)(1)) ((41)) ((51))
((21)(1)) ((3)(2)) ((321))
((4)(1)) ((4)(2))
((21)(2)) ((5)(1))
((31)(1)) ((21)(3))
((31)(2))
((3)(21))
((32)(1))
((41)(1))
((3)(2)(1))
((21)(2)(1))
This is the distinct case of
A270995.
The case of strictly decreasing sums is
A279785.
The case of constant sums is
A279791.
For distinct instead of weakly decreasing sums we have
A336343.
This is the twice-partition case of
A358913.
A001970 counts multiset partitions of integer partitions.
A055887 counts sequences of partitions.
A330462 counts set systems by total sum and length.
A358830 counts twice-partitions with distinct lengths.
Cf.
A000009,
A000219,
A075900,
A271619,
A296122,
A304969,
A321449,
A336342,
A358901,
A358906,
A358907.
-
twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
Table[Length[Select[twiptn[n],UnsameQ@@#&&And@@UnsameQ@@@#&]],{n,0,10}]
-
seq(n,k)={my(u=Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))-1)); Vec(prod(k=1, n, my(c=u[k]); sum(j=0, min(c,n\k), x^(j*k)*c!/(c-j)!, O(x*x^n))))} \\ Andrew Howroyd, Dec 31 2022
A381441
Number of multisets that can be obtained by partitioning the prime indices of n into a set of sets (set system) and taking their sums.
Original entry on oeis.org
1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 5, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 4, 1, 2, 1, 0, 2, 5, 1, 1, 2, 5, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1
The prime indices of 60 are {1,1,2,3}, with partitions into sets of sets:
{{1},{1,2,3}}
{{1,2},{1,3}}
{{1},{2},{1,3}}
{{1},{3},{1,2}}
with block-sums: {1,6}, {3,4}, {1,2,4}, {1,3,3}, which are all different, so a(60) = 4.
For distinct block-sums (instead of blocks) we have
A381634, before sums
A381633.
Other multiset partitions of prime indices:
- For strict multiset partitions with distinct sums (
A321469) see
A381637.
A003963 gives product of prime indices.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
Cf.
A000720,
A001222,
A002846,
A005117,
A066328,
A213242,
A213385,
A213427,
A299202,
A300385,
A317142.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Table[Length[Union[Sort[Total/@prix/@#]&/@Select[facs[n],UnsameQ@@#&&And@@SquareFreeQ/@#&]]],{n,100}]
A050343
Number of partitions of n into distinct parts with 2 levels of parentheses.
Original entry on oeis.org
1, 1, 1, 4, 7, 14, 29, 57, 110, 217, 417, 794, 1513, 2860, 5373, 10063, 18740, 34750, 64221, 118199, 216775, 396297, 722136, 1311888, 2376575, 4293407, 7735941, 13903985, 24929763, 44595606, 79598328, 141770576, 251984463, 446991405, 791391545, 1398551523
Offset: 0
4 = ((4)) = ((3))+((1)) = ((3)+(1)) = ((3+1)) = ((2+1))+((1)) = ((2+1)+(1)).
-
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
g(n, i-1)+`if`(i>n, 0, g(n-i, i-1))))
end:
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(g(i, i), j)*h(n-i*j, i-1), j=0..n/i)))
end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(h(i, i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n, n):
seq(a(n), n=0..50); # Alois P. Heinz, May 19 2013
-
g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, g[n, i-1] + If[i>n, 0, g[n-i, i-1]]]] ; h[n_, i_] := h[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[g[i, i], j]*h[n-i*j, i-1], {j, 0, n/i}]]]; b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[ Binomial[ h[i, i], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 17 2015, after Alois P. Heinz *)
A381715
Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into distinct constant blocks.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1
The prime indices of 1728 are {1,1,1,1,1,1,2,2,2}, with multiset partitions into distinct constant blocks:
{{2,2,2},{1,1,1,1,1,1}}
{{1},{2,2,2},{1,1,1,1,1}}
{{2},{2,2},{1,1,1,1,1,1}}
{{1,1},{2,2,2},{1,1,1,1}}
{{1},{2},{2,2},{1,1,1,1,1}}
{{1},{1,1},{1,1,1},{2,2,2}}
{{2},{1,1},{2,2},{1,1,1,1}}
{{1},{2},{1,1},{2,2},{1,1,1}}
with sums:
{6,6}
{1,5,6}
{2,4,6}
{2,4,6}
{1,2,4,5}
{1,2,3,6}
{2,2,4,4}
{1,2,2,3,4}
of which 7 are distinct, so a(1728) = 7.
Positions of terms > 1 are
A046099.
For equal instead of distinct blocks we have
A362421.
For strict instead of constant blocks we have
A381441, before sums
A050326.
A003963 gives product of prime indices.
Cf.
A000720,
A001222,
A002846,
A005117,
A050342,
A213242,
A213385,
A293511,
A299202,
A300385,
A317142,
A381870.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],UnsameQ@@#&&And@@SameQ@@@#&]]],{n,100}]
A007713
Number of 4-level rooted trees with n leaves.
Original entry on oeis.org
1, 1, 4, 10, 30, 75, 206, 518, 1344, 3357, 8429, 20759, 51044, 123973, 299848, 719197, 1716563, 4070800, 9607797, 22555988, 52718749, 122655485, 284207304, 655894527, 1508046031, 3454808143, 7887768997, 17949709753, 40719611684, 92096461012, 207697731344
Offset: 0
From _Gus Wiseman_, Oct 11 2018: (Start)
Also the number of multiset partitions of multiset partitions of integer partitions of n. For example, the a(1) = 1 through a(4) = 30 multiset partitions are:
((1)) ((2)) ((3)) ((4))
((11)) ((12)) ((13))
((1)(1)) ((111)) ((22))
((1))((1)) ((1)(2)) ((112))
((1)(11)) ((1111))
((1))((2)) ((1)(3))
((1))((11)) ((2)(2))
((1)(1)(1)) ((1)(12))
((1))((1)(1)) ((2)(11))
((1))((1))((1)) ((1)(111))
((11)(11))
((1))((3))
((2))((2))
((1))((12))
((1)(1)(2))
((2))((11))
((1))((111))
((1)(1)(11))
((11))((11))
((1))((1)(2))
((2))((1)(1))
((1))((1)(11))
((1)(1)(1)(1))
((11))((1)(1))
((1))((1))((2))
((1))((1))((11))
((1))((1)(1)(1))
((1)(1))((1)(1))
((1))((1))((1)(1))
((1))((1))((1))((1))
(End)
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- B. A. Huberman and T. Hogg, Complexity and adaptation, Evolution, games and learning (Los Alamos, N.M., 1985). Phys. D 22 (1986), no. 1-3, 376-384.
- N. J. A. Sloane, Transforms
- Index entries for sequences related to rooted trees
Cf.
A001970,
A047968,
A050342,
A089259,
A141268,
A258466,
A261049,
A319066,
A320328,
A320330,
A320331.
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: b0:= etr(1): b1:= etr(b0): a:= etr(b1): seq(a(n), n=0..30); # Alois P. Heinz, Sep 08 2008
-
i[ n_, m_ ] := 1 /; m==1 || n==0; i[ n_, m_ ] := (i[ n, m ]=1/n Sum[ i[ k, m ] Plus @@ ((# i[ #, m-1 ])& /@ Divisors[ n-k ]), {k, 0, n-1} ]) /; n>0 && m>1
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; b0 = etr[Function[1]]; b1 = etr[b0]; a = etr[b1]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)
Showing 1-10 of 49 results.
Comments