A050354 Number of ordered factorizations of n with one level of parentheses.
1, 1, 1, 3, 1, 5, 1, 9, 3, 5, 1, 21, 1, 5, 5, 27, 1, 21, 1, 21, 5, 5, 1, 81, 3, 5, 9, 21, 1, 37, 1, 81, 5, 5, 5, 111, 1, 5, 5, 81, 1, 37, 1, 21, 21, 5, 1, 297, 3, 21, 5, 21, 1, 81, 5, 81, 5, 5, 1, 201, 1, 5, 21, 243, 5, 37, 1, 21, 5, 37, 1, 513, 1, 5, 21, 21, 5, 37, 1, 297, 27, 5, 1, 201
Offset: 1
Keywords
Examples
For n=6, we have (6) = (3*2) = (2*3) = (3)*(2) = (2)*(3), thus a(6) = 5.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
A[n_]:=If[n==1, n/2, 2*Sum[If[d
Indranil Ghosh, May 19 2017 *) -
PARI
A050354aux(n) = if(1==n,n/2, 2*sumdiv(n,d, if(d
A050354aux(d), 0))); A050354(n) = if(1==n,n,A050354aux(n)); \\ Antti Karttunen, May 19 2017, after Jovovic's general recurrence. -
Sage
def A(n): return 1/2 if n==1 else 2*sum(A(d) for d in divisors(n) if d
Indranil Ghosh, May 19 2017, after Antti Karttunen's PARI program
Formula
Dirichlet g.f.: (2-zeta(s))/(3-2*zeta(s)).
Recurrence for number of ordered factorizations of n with k-1 levels of parentheses is a(n) = k*Sum_{d|n, d1, a(1)= 1/k. - Vladeta Jovovic, May 25 2005
a(p^k) = 3^(k-1).
Sum_{k=1..n} a(k) ~ -n^r / (4*r*Zeta'(r)), where r = 2.185285451787482231198145140899733642292971552057774261555354324536... is the root of the equation Zeta(r) = 3/2. - Vaclav Kotesovec, Feb 02 2019
Extensions
Duplicate comment removed by R. J. Mathar, Jul 15 2010
Comments