cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A050355 Ordered factorizations with one level of parentheses indexed by prime signatures. A050354(A025487).

Original entry on oeis.org

1, 1, 3, 5, 9, 21, 27, 81, 37, 81, 111, 297, 201, 243, 513, 1053, 945, 729, 2187, 1317, 3645, 365, 2745, 4077, 2187, 8829, 7209, 12393, 2433, 13257, 16605, 6561, 34263, 35397, 41553, 13473, 59697, 10155, 64881, 19683, 44793, 129033, 18993, 71307
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

A051707 Number of factorizations of (n,n) into pairs (j,k).

Original entry on oeis.org

1, 1, 1, 3, 1, 5, 1, 8, 3, 5, 1, 23, 1, 5, 5, 23, 1, 23, 1, 23, 5, 5, 1, 91, 3, 5, 8, 23, 1, 52, 1, 60, 5, 5, 5, 143, 1, 5, 5, 91, 1, 52, 1, 23, 23, 5, 1, 328, 3, 23, 5, 23, 1, 91, 5, 91, 5, 5, 1, 339, 1, 5, 23, 161, 5, 52, 1, 23, 5, 52, 1, 686, 1, 5, 23, 23, 5, 52, 1, 328, 23, 5, 1, 339, 5
Offset: 1

Views

Author

Keywords

Comments

Pairs (j,k) must satisfy j>1, k>=1; (a,b)*(x,y)=(a*x,b*y); unit is (1,1).
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24=2^3*3 and 375=3*5^3 both have prime signature (3,1).

Examples

			(6,6)=(2,1)*(3,6)=(2,6)*(3,1)=(2,2)*(3,3)=(2,3)*(3,2), so a(6)=5.
		

Crossrefs

Cf. A050354, A108461, A108455, A348161 (into at most two pairs).
a(p^k) = A108457(k).
Main diagonal of A108455.

Extensions

Edited by Christian G. Bower, Jun 03 2005

A050356 Number of ordered factorizations of n with 2 levels of parentheses.

Original entry on oeis.org

1, 1, 1, 4, 1, 7, 1, 16, 4, 7, 1, 40, 1, 7, 7, 64, 1, 40, 1, 40, 7, 7, 1, 208, 4, 7, 16, 40, 1, 73, 1, 256, 7, 7, 7, 292, 1, 7, 7, 208, 1, 73, 1, 40, 40, 7, 1, 1024, 4, 40, 7, 40, 1, 208, 7, 208, 7, 7, 1, 544, 1, 7, 40, 1024, 7, 73, 1, 40, 7, 73, 1, 1840, 1, 7, 40, 40, 7, 73, 1
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).

Examples

			For n=6 we have ((6)) = ((3*2)) = ((2*3)) = ((3)*(2)) = ((2)*(3)) = ((3))*((2)) = ((2))*((3)), thus a(6) = 7.
		

Crossrefs

Programs

Formula

Dirichlet g.f.: (3-2*zeta(s))/(4-3*zeta(s)).
a(p^k) = 4^(k-1).
a(A002110(n)) = A050352(n).
Sum_{k=1..n} a(k) ~ -n^r / (9*r*Zeta'(r)), where r = 2.52138975790328306967497455387140053675965539610041801606891036... is the root of the equation Zeta(r) = 4/3. - Vaclav Kotesovec, Feb 02 2019

A308076 G.f. A(x) satisfies: A(x) = x + 2*A(x^2) + 4*A(x^3) + 8*A(x^4) + ... + 2^(k-1)*A(x^k) + ...

Original entry on oeis.org

1, 2, 4, 12, 16, 48, 64, 168, 272, 576, 1024, 2288, 4096, 8448, 16512, 33456, 65536, 132448, 262144, 526784, 1049088, 2101248, 4194304, 8399232, 16777472, 33570816, 67110976, 134252288, 268435456, 536942336, 1073741824, 2147618976, 4294975488, 8590196736, 17179871232
Offset: 1

Views

Author

Ilya Gutkovskiy, May 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 35; A[] = 0; Do[A[x] = x + Sum[2^(k - 1) A[x^k], {k, 2, terms}] + O[x]^(terms + 1) //Normal, terms + 1]; Rest[CoefficientList[A[x], x]]
    a[n_] := If[n == 1, n, Sum[If[d < n, 2^(n/d - 1) a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 35}]

Formula

a(1) = 1; a(n) = Sum_{d|n, d
a(n) ~ 2^(n-1). - Vaclav Kotesovec, Oct 16 2019

A328424 a(1) = 1; a(n) = Sum_{d|n, d < n} p(n/d) * a(d), where p = A000041 (partition numbers).

Original entry on oeis.org

1, 2, 3, 9, 7, 23, 15, 50, 39, 70, 56, 187, 101, 195, 218, 420, 297, 625, 490, 949, 882, 1226, 1255, 2533, 2007, 2840, 3217, 4588, 4565, 6966, 6842, 10099, 10479, 13498, 15093, 21507, 21637, 27975, 31791, 41722, 44583, 58022, 63261, 80415, 90799, 110578, 124754
Offset: 1

Author

Ilya Gutkovskiy, Oct 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, n, Sum[If[d < n, PartitionsP[n/d] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 47}]
    terms = 47; A[] = 0; Do[A[x] = x + Sum[PartitionsP[k] A[x^k], {k, 2, terms}] + O[x]^(terms + 1) // Normal,terms + 1]; CoefficientList[A[x], x] // Rest

Formula

G.f. A(x) satisfies: A(x) = x + Sum_{k>=2} p(k) * A(x^k).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n). - Vaclav Kotesovec, Oct 16 2019

A329385 Dirichlet g.f.: 1 / (2 - Product_{k>=1} zeta(k*s)).

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 1, 8, 3, 3, 1, 11, 1, 3, 3, 22, 1, 11, 1, 11, 3, 3, 1, 36, 3, 3, 8, 11, 1, 13, 1, 59, 3, 3, 3, 45, 1, 3, 3, 36, 1, 13, 1, 11, 11, 3, 1, 116, 3, 11, 3, 11, 1, 36, 3, 36, 3, 3, 1, 57, 1, 3, 11, 160, 3, 13, 1, 11, 3, 13, 1, 164, 1, 3, 11, 11, 3, 13, 1, 116
Offset: 1

Author

Ilya Gutkovskiy, Jun 07 2020

Keywords

Crossrefs

Cf. A000688, A001358 (positions of 3's), A008578 (positions of 1's), A050354, A129667.

Programs

  • Mathematica
    a[n_] := If[n == 1, n, Sum[If[d < n, FiniteAbelianGroupCount[n/d] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 80}]

Formula

G.f. A(x) satisfies: A(x) = x + Sum_{k>=2} A000688(k) * A(x^k).
a(1) = 1; a(n) = Sum_{d|n, d < n} A000688(n/d) * a(d).
Let f(s) = Product_{k>=1} zeta(k*s), then Sum_{k=1..n} a(k) ~ n^r / (-r*f'(r)), where r = A335494 = 1.8868691498777... is the root of the equation f(r) = 2 and f'(r) = -1.8255483309672084429580571100367977185868132697213762608374345719289... - Vaclav Kotesovec, Jun 11 2020

A329803 a(1) = 1; a(n) = Sum_{d|n, d < n} q(n/d) * a(d), where q() = A000009.

Original entry on oeis.org

1, 1, 2, 3, 3, 8, 5, 11, 12, 16, 12, 37, 18, 32, 39, 55, 38, 90, 54, 105, 96, 113, 104, 236, 151, 201, 232, 301, 256, 450, 340, 517, 496, 588, 615, 988, 760, 972, 1054, 1395, 1260, 1766, 1610, 2078, 2240, 2512, 2590, 3653, 3289, 4029, 4249, 5038, 5120, 6526
Offset: 1

Author

Ilya Gutkovskiy, Nov 21 2019

Keywords

Programs

  • Mathematica
    a[n_] := If[n == 1, n, Sum[If[d < n, PartitionsQ[n/d] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 54}]
    nmax = 54; A[] = 0; Do[A[x] = x + Sum[PartitionsQ[k] A[x^k], {k, 2, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest

Formula

G.f. A(x) satisfies: A(x) = x + Sum_{k>=2} q(k) * A(x^k).
Showing 1-7 of 7 results.