cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050400 Number of independent sets of vertices in P_3 X C_n (n > 2).

Original entry on oeis.org

5, 1, 17, 43, 181, 621, 2309, 8303, 30277, 109753, 398857, 1447931, 5258725, 19095285, 69344061, 251811903, 914429445, 3320635025, 12058502657, 43789003563, 159014593621, 577442573597, 2096914206261, 7614694850543, 27651860345029, 100414447219721, 364643142303353
Offset: 0

Views

Author

Stephen G Penrice, Dec 21 1999

Keywords

Crossrefs

Column 3 of A286513.

Programs

  • GAP
    a:=[5,1,17,43,181];; for n in [6..30] do a[n]:=a[n-1]+8*a[n-2] +6*a[n-3] -a[n-4]-a[n-5]; od; a; # G. C. Greubel, Oct 30 2019
  • Magma
    I:=[5,1,17,43,181]; [n le 5 select I[n] else Self(n-1) + 8*Self(n-2) + 6*Self(n-3) - Self(n-4) - Self(n-5): n in [1..30]]; // Vincenzo Librandi, May 11 2017
    
  • Maple
    seq(coeff(series((5-4*x-24*x^2-12*x^3+x^4)/((1+x)*(1-2*x-6*x^2+x^4)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 30 2019
  • Mathematica
    CoefficientList[Series[(5-4*x-24*x^2-12*x^3+x^4)/((1+x)*(1-2*x-6*x^2+ x^4)), {x, 0, 30}], x] (* Vincenzo Librandi, May 11 2017 *)
  • PARI
    my(x='x+O('x^30)); Vec((5-4*x-24*x^2-12*x^3+x^4)/((1+x)*(1-2*x-6*x^2+x^4))) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    def A077952_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((5-4*x-24*x^2-12*x^3+x^4)/((1+x)*(1-2*x-6*x^2+x^4))).list()
    A077952_list(30) # G. C. Greubel, Oct 30 2019
    

Formula

a(n) = a(n-1) + 8*a(n-2) + 6*a(n-3) - a(n-4) - a(n-5).
G.f.: (5-4*x-24*x^2-12*x^3+x^4)/((1+x)*(1-2*x-6*x^2+x^4)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009

Extensions

More terms from Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999