cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050402 Number of independent sets of nodes in C_4 X C_n (n > 2).

Original entry on oeis.org

7, 1, 35, 121, 743, 3561, 18995, 96433, 500871, 2573905, 13292995, 68492073, 353290343, 1821383097, 9392360019, 48428332641, 249716406791, 1287608913057, 6639354593123, 34234612471001, 176524935990503, 910219628918665, 4693389213891699, 24200638961917201
Offset: 0

Views

Author

Stephen G Penrice, Dec 21 1999

Keywords

Programs

  • GAP
    a:=[7,1,35,121,743,3561];; for n in [7..30] do a[n]:=2*a[n-1] +15*a[n-2]+8*a[n-3]-7*a[n-4]-2*a[n-5]-a[n-6]; od; a; # G. C. Greubel, Oct 30 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (7 -13*x -72*x^2 -20*x^3 +17*x^4 +x^5)/((1+x)*(1+2*x-x^2)*(1-5*x-x^2+x^3)) )); // G. C. Greubel, Oct 30 2019
    
  • Maple
    seq(coeff(series((7-13*x-72*x^2-20*x^3+17*x^4+x^5)/((1+x)*(1+2*x-x^2) *(1-5*x-x^2+x^3)), x, n+1), x, n), n = 0 ..30); # G. C. Greubel, Oct 30 2019
  • Mathematica
    CoefficientList[Series[(7 -13*x -72*x^2 -20*x^3 +17*x^4 +x^5)/((1+x)*(1+2*x-x^2)*(1-5*x-x^2+x^3)), {x, 0, 30}], x]
  • PARI
    Vec((7-13*x-72*x^2-20*x^3+17*x^4+x^5)/((1+x)*(1+2*x-x^2)*(1-5*x- x^2+x^3)) + O(x^30)) \\ Colin Barker, May 11 2017
    
  • Sage
    def A050402_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((7 -13*x -72*x^2 -20*x^3 +17*x^4 +x^5)/((1+x)*(1+2*x-x^2)*(1-5*x-x^2+x^3))).list()
    A050402_list(30) # G. C. Greubel, Oct 30 2019
    

Formula

a(n) = a(n-1) + 17*a(n-2) + 23*a(n-3) + a(n-4) - 9*a(n-5) - a(n-6) + a(n-7).
G.f.: (7 -13*x -72*x^2 -20*x^3 +17*x^4 +x^5)/((1+x)*(1+2*x-x^2)*(1-5*x-x^2+x^3)). - Colin Barker, Aug 31 2012

Extensions

More terms from Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999