cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A050448 a(n) = Sum_{d|n, d==1 (mod 4)} d^4.

Original entry on oeis.org

1, 1, 1, 1, 626, 1, 1, 1, 6562, 626, 1, 1, 28562, 1, 626, 1, 83522, 6562, 1, 626, 194482, 1, 1, 1, 391251, 28562, 6562, 1, 707282, 626, 1, 1, 1185922, 83522, 626, 6562, 1874162, 1, 28562, 626, 2825762, 194482, 1, 1, 4107812, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^4 &, Mod[#, 4] == 1 &]; Array[a, 50] (* Amiram Eldar, Jul 08 2023 *)
  • PARI
    a(n) = sumdiv(n, d, if ((d%4)==1, d^4)); \\ Michel Marcus, Aug 16 2021

Extensions

Offset corrected by Sean A. Irvine, Aug 15 2021

A050459 a(n) = Sum_{d|n, d==1 mod 4} d^3 - Sum_{d|n, d==3 mod 4} d^3.

Original entry on oeis.org

1, 1, -26, 1, 126, -26, -342, 1, 703, 126, -1330, -26, 2198, -342, -3276, 1, 4914, 703, -6858, 126, 8892, -1330, -12166, -26, 15751, 2198, -18980, -342, 24390, -3276, -29790, 1, 34580, 4914, -43092, 703, 50654, -6858, -57148, 126, 68922, 8892, -79506, -1330
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Comments

Multiplicative because it is the Inverse Möbius transform of [1 0 -3^3 0 5^3 0 -7^3 ...], which is multiplicative. - Christian G. Bower, May 18 2005

Crossrefs

Column k=3 of A322143.

Programs

  • Maple
    A050459 := proc(n) local a; a := 0 ; for d in numtheory[divisors](n) do if d mod 4 = 1 then a := a+d^3 ; elif d mod 4 = 3 then a := a-d^3 ; end if; end do;  a ; end proc:
    seq(A050459(n),n=1..100) ; # R. J. Mathar, Jan 07 2011
  • Mathematica
    s[n_, r_] := DivisorSum[n, #^3 &, Mod[#, 4]==r &]; a[n_] := s[n, 1] - s[n, 3]; Array[a, 30] (* Amiram Eldar, Dec 06 2018 *)
    f[p_, e_] := If[Mod[p, 4] == 1, ((p^3)^(e+1)-1)/(p^3-1), ((-p^3)^(e+1)-1)/(-p^3-1)]; f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* Amiram Eldar, Sep 27 2023 *)

Formula

a(n) = A050451(n) - A050454(n).
G.f.: Sum_{k>=1} (-1)^(k-1)*(2*k - 1)^3*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 22 2018
Multiplicative with a(2^e) = 1, and for an odd prime p, ((p^3)^(e+1)-1)/(p^3-1) if p == 1 (mod 4) and ((-p^3)^(e+1)-1)/(-p^3-1) if p == 3 (mod 4). - Amiram Eldar, Sep 27 2023
a(n) = Sum_{d|n} d^3*sin(d*Pi/2). - Ridouane Oudra, Jun 02 2024
Showing 1-2 of 2 results.