cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050460 a(n) = Sum_{d|n, n/d=1 mod 4} d.

Original entry on oeis.org

1, 2, 3, 4, 6, 6, 7, 8, 10, 12, 11, 12, 14, 14, 18, 16, 18, 20, 19, 24, 22, 22, 23, 24, 31, 28, 30, 28, 30, 36, 31, 32, 34, 36, 42, 40, 38, 38, 42, 48, 42, 44, 43, 44, 60, 46, 47, 48, 50, 62, 54, 56, 54, 60, 66, 56, 58, 60, 59, 72, 62, 62, 73, 64, 84, 68
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Comments

Not multiplicative: a(3)*a(7) <> a(21), for example.

Crossrefs

Programs

  • Maple
    A050460 := proc(n)
            a := 0 ;
            for d in numtheory[divisors](n) do
                    if (n/d) mod 4 = 1 then
                            a := a+d ;
                    end if;
            end do:
            a;
    end proc:
    seq(A050460(n),n=1..40) ; # R. J. Mathar, Dec 20 2011
  • Mathematica
    a[n_] := DivisorSum[n, Boole[Mod[n/#, 4] == 1]*#&]; Array[a, 70] (* Jean-François Alcover, Dec 01 2015 *)
  • PARI
    a(n)=sumdiv(n,d,if(n/d%4==1,d)) \\ Charles R Greathouse IV, Dec 04 2013

Formula

G.f.: Sum_{n>0} n*x^n/(1-x^(4*n)). - Vladeta Jovovic, Nov 14 2002
G.f.: Sum_{k>0} x^(4*k-3) / (1 - x^(4*k-3))^2. - Seiichi Manyama, Jun 29 2023
from Amiram Eldar, Nov 05 2023: (Start)
a(n) = A002131(n) - A050464(n).
a(n) = A050469(n) + A050464(n).
a(n) = (A002131(n) + A050469(n))/2.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A222183. (End)