cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050468 a(n) = Sum_{d|n, n/d=1 mod 4} d^4 - Sum_{d|n, n/d=3 mod 4} d^4.

Original entry on oeis.org

1, 16, 80, 256, 626, 1280, 2400, 4096, 6481, 10016, 14640, 20480, 28562, 38400, 50080, 65536, 83522, 103696, 130320, 160256, 192000, 234240, 279840, 327680, 391251, 456992, 524960, 614400, 707282, 801280, 923520, 1048576, 1171200
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Comments

Multiplicative because it is the Dirichlet convolution of A000583 = n^4 and A101455 = [1 0 -1 0 1 0 -1 ...], which are both multiplicative. - Christian G. Bower, May 17 2005
Called E'_4(n) by Hardy.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = x + 16*x^2 + 80*x^3 + 256*x^4 + 626*x^5 + 1280*x^6 + 2400*x^7 + 4096*x^8 + ...
		

References

  • Emil Grosswald, Representations of Integers as Sums of Squares, Springer-Verlag, NY, 1985, p. 120.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Chelsea Publishing Company, New York 1959, p. 135, section 9.3. MR0106147 (21 #4881)

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(4), 5), 34); A[2] + 16*A[3]; /* Michael Somos, May 03 2015 */
  • Mathematica
    edashed[r_,n_] := Plus@@(Select[Divisors[n], Mod[n/#,4] == 1 &]^r) - Plus@@(Select[Divisors[n], Mod[n/#,4] == 3 &]^r); edashed[4,#] &/@Range[33] (* Ant King, Nov 10 2012 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^2] (EllipticTheta[ 2, 0, x]^8 + 4 EllipticTheta[ 2, 0, x^2]^8) / 256, {x, 0, 2 n}]; (* Michael Somos, Jan 11 2015 *)
    s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
    f[p_, e_] := (p^(4*e+4) - s[p]^(e+1))/(p^4 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * (-1)^((n/d - 1)/2) * d^4))}; /* Michael Somos, Sep 12 2005 */
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, d^4 * kronecker( -4, n\d)))}; /* Michael Somos, Jan 14 2012 */
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^4 + A)^4 * (eta(x + A)^4 + 20 * x * eta(x^4 + A)^8 / eta(x + A)^4), n))}; /* Michael Somos, Jan 14 2012 */
    

Formula

a(2*n + 1) = A204342(n). a(2*n) = 16 * a(n).
G.f.: Sum_{n>=1} n^4*x^n/(1+x^(2*n)). - Vladeta Jovovic, Oct 16 2002
From Michael Somos, Jan 14 2012: (Start)
Expansion of eta(q^2)^2 * eta(q^4)^4 * (eta(q)^4 + 20 * eta(q^4)^8 / eta(q)^4) in powers of q.
a(n) is multiplicative with a(2^e) = 16^e, a(p^e) = ((p^4)^(e+1) - 1) / (p^4 - 1) if p == 1 (mod 4), a(p^e) = ((p^4)^(e+1) - (-1)^(e+1)) / (p^4 + 1) if p == 3 (mod 4). (End)
From Michael Somos, Jan 15 2012: (Start)
Expansion of theta_3(q^2) * (theta_2(q)^8 + 4 * theta_2(q^2)^8) / 256 in powers of q^2.
Expansion of x * phi(x)^2 * (psi(x)^8 + 4 * x * psi(x^2)^8) in powers of x where phi(), psi() are Ramanujan theta functions. (End)
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = (1/2) (t/i)^5 g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A204372. - Michael Somos, May 03 2015
From Amiram Eldar, Nov 04 2023: (Start)
Multiplicative with a(p^e) = (p^(4*e+4) - A101455(p)^(e+1))/(p^4 - A101455(p)).
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = 5*Pi^5/1536 (A175571). (End)
a(n) = Sum_{d|n} (n/d)^4*sin(d*Pi/2). - Ridouane Oudra, Sep 27 2024