A050512 a(n) = (a(n-1)*a(n-3) - a(n-2)^2) / a(n-4), with a(0) = 0, a(1) = a(2) = a(3) = 1, a(4) = -1.
0, 1, 1, 1, -1, -2, -3, -1, 7, 11, 20, -19, -87, -191, -197, 1018, 2681, 8191, -5841, -81289, -261080, -620551, 3033521, 14480129, 69664119, -2664458, -1612539083, -7758440129, -37029252553, 181003520899, 1721180313660, 12437589708389, 19206818781913
Offset: 0
Examples
G.f. = x + x^2 + x^3 - x^4 - 2*x^5 - 3*x^6 - x^7 + 7*x^8 + 11*x^9 + 20*x^10 + ...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..250
- Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
- Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018.
- Clark Kimberling, Strong divisibility sequences and some conjectures, Fib. Quart., 17 (1979), 13-17.
- LMFDB, Elliptic Curve 43.a1 (Cremona label 43a1)
Crossrefs
Cf. A006769.
Programs
-
Haskell
a050512 n = a050512_list !! n a050512_list = 0 : 1 : 1 : 1 : (-1) : zipWith div (zipWith (-) (zipWith (*) (drop 4 a050512_list) (drop 2 a050512_list)) (map (^ 2) (drop 3 a050512_list))) (tail a050512_list) -- Reinhard Zumkeller, Nov 02 2011
-
Mathematica
a[n_?OddQ] := a[n] = a[(n-1)/2]^3*a[(n+3)/2] - a[(n-3)/2]*a[(n+1)/2]^3; a[n_?EvenQ] := a[n] = (a[n/2-1]^2*a[n/2+2] - a[n/2-2]*a[n/2+1]^2)*a[n/2]; a[0] = 0; a[1] = a[2] = a[3] = 1; a[4] = -1; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 29 2011 *) Join[{0},RecurrenceTable[{a[1]==a[2]==a[3]==1,a[4]==-1,a[n]==(a[n-1] a[n-3]-a[n-2]^2)/a[n-4]},a,{n,30}]] (* Harvey P. Dale, Mar 23 2012 *)
-
PARI
an=vector(200); for(n=1,4,an[ n ]=[ 1,1,1,-1 ][ n ]); for(n=5, length(an),an[ n ]=(an[ n-1 ]*an[ n-3 ]-an[ n-2 ]^2)/an[ n-4 ]); a(n) =sign(n)*an[ abs(n)+(n==0) ]
-
PARI
{a(n) = my(an); if( n<0, -a(-n), if( n==0, 0, an = vector( max(4, n), i, 1); an[4] = -1; for( k=5, n, an[k] = (an[k-1] * an[k-3] - an[k-2]^2) / an[k-4]); an[n]))}; /* Michael Somos, Jul 07 2014 */
Formula
a(2*n + 1) = a(n + 2) * a(n)^3 - a(n - 1) * a(n + 1)^3 for all n in Z.
a(2*n) = a(n + 2) * a(n) * a(n - 1)^2 - a(n) * a(n - 2) * a(n + 1)^2 for all n in Z.
0 = a(n)*a(n+5) - a(n+1)*a(n+4) - a(n+2)*a(n+3) for all n in Z. - Michael Somos, Jul 07 2014
0 = a(n)*a(n+6) + a(n+1)*a(n+5) - 2*a(n+2)*a(n+4) for all n in Z. - Michael Somos, Jul 07 2014
a(n) = -a(-n) for all n in Z. - Michael Somos, Feb 14 2023
Comments