A050605 Column/row 2 of A050602: a(n) = add3c(n,2).
0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 3, 3, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 4, 4, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 3, 3, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 5, 5, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 3, 3, 0, 0, 1, 1, 0, 0, 2, 2
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Intrinsic Properties of a Non-Symmetric Number Triangle, J. Int. Seq., Vol. 26 (2023), Article 23.4.8.
Crossrefs
Programs
-
Magma
[Valuation(n*(n+1)/2, 2): n in [1..120]]; // Vincenzo Librandi, Aug 11 2017
-
Maple
with(Bits): add3c := proc(a, b) option remember; `if`(0 = And(a, b), 0, 1 + add3c(Xor(a, b), 2*And(a, b))) end: A050605 := n -> add3c(n, 2): seq(A050605(n), n=0..80); # Johannes W. Meijer, Jun 18 2009; updated by Peter Luschny, Jul 12 2019
-
Mathematica
Table[IntegerExponent[(n + 1)(n + 2)/2, 2], {n, 0, 100}] (* Jean-François Alcover, Mar 04 2016 *)
-
PARI
a(n)=valuation(n*(n+1)/2,2)
Formula
a(4*n+2) = A001511(n). - Johannes W. Meijer, Jun 18 2009
Comments