cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A050638 a(n+1) is next smallest square ending with a(n), initial term is 9.

Original entry on oeis.org

9, 49, 1849, 1671849, 24011671849, 408646172724011671849, 14079962896835441528408646172724011671849, 30988070410883251650062468506470600085614079962896835441528408646172724011671849
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1999

Keywords

Crossrefs

Extensions

More terms from Ulrich Schimke (ulrschimke(AT)aol.com), Nov 06 2001

A061363 a(1) = 9; a(n) = least number such that the concatenation a(n)a(n-1)...a(2)a(1) is a square.

Original entry on oeis.org

9, 4, 18, 167, 2401, 4086461727, 14079962896835441528, 309880704108832516500624685064706000856, 4681896102766617737298881383797502847166028831212571921983062786215145771871779
Offset: 1

Views

Author

Amarnath Murthy, Apr 28 2001

Keywords

Examples

			a(3)a(2)a(1) = 1849 = 43^2, a(4)a(3)a(2)a(1) = 1671849 = 1293^2.
		

Crossrefs

Extensions

Corrected by Larry Reeves (larryr(AT)acm.org), May 07 2001
More terms from Ulrich Schimke (ulrschimke(AT)aol.com), Nov 06 2001

A050633 a(1)=3; for n>1, a(n)^2 is next smallest nontrivial square containing a(n-1)^2 as a substring.

Original entry on oeis.org

3, 7, 43, 136, 10158, 85927342, 738024797793593
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1999

Keywords

Crossrefs

Starting with a(2)=7, the sequence is identical to A050631.

Formula

a(n) = sqrt(A050632(n)).

Extensions

a(7) from Max Alekseyev, Feb 15 2012

A065786 a(1) = 7; for n > 1, a(n) is the square root of the smallest square > a(n-1)^2 with a(n-1)^2 forming its final digits.

Original entry on oeis.org

7, 43, 1293, 154957, 20214998707, 118659019449999845043, 5566692951015284052000000000020214998707, 21637689578064053873124753714430240419600000000000000000000118659019449999845043
Offset: 1

Views

Author

Klaus Brockhaus, Nov 19 2001

Keywords

Comments

a(n) = A050639(n+1) for n >= 1.

Crossrefs

A065808 Square of n has a smaller square as its final digits.

Original entry on oeis.org

7, 8, 9, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 67, 68, 69, 70, 71, 72, 73, 75, 77, 78, 79, 80, 81, 82, 83, 85, 87, 88
Offset: 1

Views

Author

Klaus Brockhaus, Nov 22 2001

Keywords

Comments

Includes all n >= 7 not == 4 or 6 (mod 10). - Robert Israel, Oct 24 2017

Crossrefs

A065807 gives the corresponding squares.

Programs

  • Maple
    filter:= n ->
      ormap(t -> issqr(n^2 mod 10^t), [$1..ilog10(n^2)]):
    select(filter, [$1..100]); # Robert Israel, Oct 24 2017
  • Mathematica
    ds[n_] := NestWhileList[FromDigits[Rest[IntegerDigits[#]]] &, n, # > 9 &]; Select[Range[4, 88], Or @@ IntegerQ /@ Sqrt[Rest[ds[#^2]]] &] (* Jayanta Basu, Jul 10 2013 *)
  • PARI
    a065808(m) = local(k, a, b, d, j, n, r); for(k=1, m, a=length(Str(n))-1; b=1; j=1; n=k^2; while(b, d=divrem(n, 10^j); if(d[1]>0&&issquare(d[2]), b=0; issquare(n, &r); print1(r, ","), if(j
    				

Extensions

Offset changed to 1 by Robert Israel, Oct 24 2017
Showing 1-5 of 5 results.