A050690 Sum of digits of zero-absent composite a(n) equals number of prime factors.
12, 32, 1152, 11232, 13122, 14112, 21312, 111132, 112112, 3121152, 11231232, 11354112, 812122112, 1251213312, 2211121152, 2211213312, 5121114112, 26122125312, 56321114112, 62214111232, 431711322112, 3421411213312, 11111212122112, 11112113242112
Offset: 1
Examples
E.g., 21312 (no zero in the string) gives 2+1+3+1+2 = 9 prime factors, namely, 2*2*2*2*2*2*3*3*37.
Programs
-
Mathematica
t={}; Do[If[FreeQ[x=IntegerDigits[n],0]&&PrimeOmega[n]==Total[x],AppendTo[t,n]],{n,2,3220000,2}]; t (* Jayanta Basu, May 30 2013 *)
Extensions
a(15)-a(20) from Donovan Johnson, May 30 2010
a(21)-a(22) confirmed by Giovanni Resta, Jun 02 2013
a(23)-a(24) from Giovanni Resta, Apr 23 2017
Comments