cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A050698 Numbers that appear in A050695 but not in A035139.

Original entry on oeis.org

51, 74, 91, 94, 104, 114, 117, 119, 121, 133, 136, 141, 143, 154, 156, 159, 164, 169, 171, 176, 178, 186, 187, 194, 198, 203, 207, 209, 221, 253, 261, 291, 299, 301, 314, 319, 338, 341, 344, 346, 361, 364, 368, 374, 376, 377, 386, 391, 394, 398, 403, 404
Offset: 1

Views

Author

Patrick De Geest, Aug 15 1999

Keywords

Comments

None of the prime factors of a(n) are a substring of a(n) and at least one of the digits of the prime factors of a(n) appears in a(n).

Examples

			51 = 3*17 -> digit 1 appears in 5{1}.
		

Crossrefs

A050694 Composite numbers k such that all prime factors of k are a substring of k.

Original entry on oeis.org

25, 32, 125, 128, 135, 175, 243, 250, 256, 324, 375, 432, 512, 625, 735, 875, 1024, 1250, 1352, 1372, 1593, 1675, 1715, 1792, 2048, 2176, 2304, 2500, 2510, 2560, 2570, 2744, 3072, 3087, 3125, 3375, 3645, 3675, 3792, 4232, 4375, 5120, 5210, 5230, 5832
Offset: 1

Views

Author

Patrick De Geest, Aug 15 1999

Keywords

Examples

			1675 = 5*5*67 -> 167{5} and 1{67}5.
		

Crossrefs

Programs

  • Mathematica
    d[n_]:=IntegerDigits[n]; t={}; Do[le1=Max@@Length/@(t1=d[First/@FactorInteger[n]]); t2=Flatten[Table[Partition[d[n],i,1],{i,le1}],1]; If[!PrimeQ[n]&&Complement[t1,t2]=={},AppendTo[t,n]],{n,20,5850}]; t (* Jayanta Basu, May 31 2013 *)
  • PARI
    substr(m,n)=my(a=#Str(m),b=#Str(n)); for(i=0,a-b,if(valuation(m-n,10)>=b, return(1)); m\=10); 0
    is(n)=if(isprime(n)||n<9, return(0)); my(f=factor(n)[,1]); for(i=1,#f,if(!substr(n,f[i]), return(0))); 1 \\ Charles R Greathouse IV, Jul 09 2015

Formula

a(n) << n log n. - Charles R Greathouse IV, Jul 09 2015

A131930 Numbers k such that the decimal representation of k contains at least one prime factor of k.

Original entry on oeis.org

2, 3, 5, 7, 11, 12, 13, 15, 17, 19, 20, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 41, 42, 43, 45, 47, 50, 52, 53, 55, 59, 61, 62, 63, 65, 67, 70, 71, 72, 73, 75, 77, 79, 82, 83, 85, 89, 92, 93, 95, 97, 101, 102, 103, 105, 107, 109, 110, 112, 113, 115, 120
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 30 2007

Keywords

Comments

Numbers k such that A131929(k) > 0; complement of A050695 including 1.
All primes are terms.

Examples

			55 is a term because 5 | 55.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,120],ContainsAny[Rest[FromDigits/@Subsets[IntegerDigits[#]]],First/@FactorInteger[#]]&] (* James C. McMahon, Mar 02 2025 *)

A131929 Number of prime factors of n that are contained in decimal representation of n.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 30 2007

Keywords

Comments

a(A050695(n)) = 0; a(A131930(n)) > 0;
a(A131931(n)) = n and a(m) <> n for m < A131931(n).

Examples

			a(230) = a(23*5*2) = #{2,23} = 2.
		

Crossrefs

A050696 At least one prime factor of composite a(n) is a substring of a(n).

Original entry on oeis.org

12, 15, 20, 22, 24, 25, 26, 28, 30, 32, 33, 35, 36, 39, 42, 45, 50, 52, 55, 62, 63, 65, 70, 72, 75, 77, 82, 85, 92, 93, 95, 102, 105, 110, 112, 115, 120, 122, 123, 124, 125, 126, 128, 130, 132, 135, 138, 142, 145, 147, 150, 152, 153, 155, 162, 165, 170, 172, 175
Offset: 1

Views

Author

Patrick De Geest, Aug 15 1999

Keywords

Examples

			26 is in the sequence because 26 = 2 * 13 and the factor 2 appears in the decimal representation. Though 13 does not appear, the 2 is enough for 26 to be in the sequence.
27 is not in the sequence since 27 = 3 * 3 * 3, which does not appear in the decimal representation.
		

Crossrefs

Programs

  • Mathematica
    digs[n_] := IntegerDigits[n]; A050696 = {}; Do[le1 = Max@@Length/@(prFDigs = digs[First/@FactorInteger[n]]); dSubStrs = Flatten[Table[Partition[digs[n], i, 1], {i, le1}], 1]; If[!PrimeQ[n] && Intersection[prFDigs, dSubStrs] != {}, AppendTo[A050696, n]],{n, 2, 180}]; A050696 (* Jayanta Basu, May 31 2013 *)
Showing 1-5 of 5 results.