cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A050695 Composite numbers k such that none of the prime factors of k is a substring of k.

Original entry on oeis.org

4, 6, 8, 9, 10, 14, 16, 18, 21, 27, 34, 38, 40, 44, 46, 48, 49, 51, 54, 56, 57, 58, 60, 64, 66, 68, 69, 74, 76, 78, 80, 81, 84, 86, 87, 88, 90, 91, 94, 96, 98, 99, 100, 104, 106, 108, 111, 114, 116, 117, 118, 119, 121, 129, 133, 134, 136, 140, 141, 143, 144, 146
Offset: 1

Views

Author

Patrick De Geest, Aug 15 1999

Keywords

Comments

A131929(a(n)) = 0; together with 1, complement of A131930. - Reinhard Zumkeller, Jul 30 2007

Examples

			114 = 2*3*19.
		

Crossrefs

Programs

  • Mathematica
    d[n_]:=IntegerDigits[n]; t={}; Do[le1=Max@@Length/@(t1=d[First/@FactorInteger[n]]); t2=Flatten[Table[Partition[d[n],i,1],{i,le1}],1]; If[!PrimeQ[n]&&Intersection[t1,t2]=={},AppendTo[t,n]],{n,2,146}]; t (* Jayanta Basu, May 31 2013 *)
    npfsQ[n_]:=Module[{idn=IntegerDigits[n],f=FactorInteger[n][[All,1]]}, And@@ Table[SequenceCount[idn,IntegerDigits[f[[i]]]]==0,{i, Length[ f]}]]; Select[Range[200],CompositeQ[#] && npfsQ[#]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 28 2016 *)

A131929 Number of prime factors of n that are contained in decimal representation of n.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 30 2007

Keywords

Comments

a(A050695(n)) = 0; a(A131930(n)) > 0;
a(A131931(n)) = n and a(m) <> n for m < A131931(n).

Examples

			a(230) = a(23*5*2) = #{2,23} = 2.
		

Crossrefs

A131931 Smallest number containing exactly n prime factors in its decimal representation.

Original entry on oeis.org

1, 2, 132, 735, 21372, 271362, 4773132, 113678565, 11317129824
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 30 2007

Keywords

Comments

A131929(a(n)) = n and A131929(m) <> n for m

Examples

			a(2) = 2^2 * 3 * 11 = 132 containing 2 and 3;
a(3) = 3 * 5 * 7^2 = 735 containing 3, 5 and 7;
a(4) = 2^2 * 3 * 13 * 137 = 21372 containing 2, 3, 13 and 137;
a(5) = 2 * 3 * 7^2 * 13 * 71 = 271362 containing 2, 3, 7, 13 and 71.
		

Crossrefs

Extensions

Offset changed by and a(6)-a(8) from Giovanni Resta, Sep 06 2018

A318965 a(n) is the smallest number containing all its n prime factors in its decimal representation.

Original entry on oeis.org

2, 135, 735, 21372, 271362, 4773132, 113678565, 11317129824, 131175822960, 7113719552940, 255360234137190, 12411792985131540
Offset: 1

Author

Giovanni Resta, Sep 06 2018

Keywords

Examples

			a(2) = 135 = 3^3 * 5,
a(3) = 735 = 3 * 5 * 7^2,
a(4) = 21372 = 2^2 * 3 * 13 * 137,
a(5) = 271362 = 2 * 3 * 7^2 * 13 * 71,
a(6) = 4773132 = 2^2 * 3^2 * 7 * 13 * 31 * 47.
a(7) = 113678565 = 3 * 5 * 7 * 11 * 13 * 67 * 113.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{k=1, s, f}, While[True, k++; If[Length[f = FactorInteger[k]] == n, s = ToString@k; If[AllTrue[First /@ f, StringPosition[s, ToString@ #] != {} &], Break[]]]]; k]; Array[a, 5]

A319022 a(n) is the smallest number with n distinct prime factors whose decimal representation contains all its prime factors, taking multiplicity into account.

Original entry on oeis.org

2, 119911, 2510, 21372, 1943795, 73171842, 113678565, 13121675970, 297115923720, 73605381139290, 255360234137190, 43759729761726090
Offset: 1

Author

Altug Alkan, Sep 08 2018

Keywords

Comments

A version of A318965.
If a term t is divisible by a prime power p^k, then p must appear at least k times in the decimal representation of t. The copies of p are allowed to overlap; however, in the first 12 terms of the sequence, this does not occur, and only a(2), a(4), and a(9) are nonsquarefree.
a(n) >= A318965(n) by definition. If A318965(n) is squarefree, then a(n) = A318965(n). But a(n) = A318965(n) can also hold for a(n) that is nonsquarefree; e.g., a(4) = A318965(4).

Examples

			a(2) = 119911 = 11 * 11 * 991.
a(3) = 2510 = 2 * 5 * 251.
a(4) = 21372 = 2 * 2 * 3 * 13 * 137.
a(5) = 1943795 = 5 * 7 * 19 * 37 * 79.
a(6) = 73171842 = 2 * 3 * 17 * 31 * 73 * 317.
a(7) = 113678565 = 3 * 5 * 7 * 11 * 13 * 67 * 113.
		

Crossrefs

Extensions

Terms computed by Giovanni Resta, Sep 08 2018
Showing 1-5 of 5 results.