cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A050699 Nonprime numbers n such that n and n-reversed (<> n and no leading zeros) have the same number of prime factors (counted with multiplicity).

Original entry on oeis.org

15, 26, 39, 49, 51, 58, 62, 85, 93, 94, 115, 117, 122, 123, 126, 129, 143, 147, 155, 158, 159, 165, 169, 177, 178, 183, 185, 187, 203, 205, 221, 225, 226, 244, 246, 265, 285, 286, 289, 294, 302, 314, 315, 319, 321, 326, 327, 329, 335, 338, 339, 341, 355, 366
Offset: 1

Views

Author

Patrick De Geest, Aug 15 1999

Keywords

Examples

			E.g., 321 = 3*107 and 123 = 3*41 -> both 321 and 123 have two prime factors.
		

Crossrefs

Programs

  • Maple
    with(numtheory): read(transforms): for n from 12 to 366 do r:=digrev(n): if(not isprime(n) and not n=r and not n mod 10 = 0 and bigomega(n)=bigomega(r))then printf("%d, ", n); fi: od: # Nathaniel Johnston, Jun 23 2011
  • Mathematica
    nrnQ[n_]:=Module[{idn=IntegerDigits[n],rev},rev=Reverse[idn];!PrimeQ[n] &&First[rev]!=0&&idn!=rev&&PrimeOmega[n]==PrimeOmega[FromDigits[rev]]]; Select[Range[400],nrnQ] (* Harvey P. Dale, Jun 23 2011 *)

Extensions

Definition clarified by Harvey P. Dale, Jun 23 2011

A050700 Composite numbers n smaller than their decimal reverse but having the same number of prime factors.

Original entry on oeis.org

15, 26, 39, 49, 58, 115, 117, 122, 123, 126, 129, 143, 147, 155, 158, 159, 165, 169, 177, 178, 183, 185, 187, 203, 205, 225, 226, 244, 246, 265, 285, 286, 289, 294, 314, 315, 319, 326, 327, 329, 335, 338, 339, 355, 366, 369, 394, 398, 406, 415, 418, 425
Offset: 1

Views

Author

Patrick De Geest, Aug 15 1999

Keywords

Examples

			a(n)=143 -> a(n)-reversed=341 gives pair (143,341) of which only the smaller value 143 is in this sequence.
		

Crossrefs

Programs

  • Mathematica
    rev[n_]:=FromDigits[Reverse[IntegerDigits[n]]]; Select[Range[425],!PrimeQ[#]&&PrimeOmega[#]==PrimeOmega[x=rev[#]]&&#Jayanta Basu, May 31 2013 *)
  • PARI
    is(n)=my(r=fromdigits(Vecrev(digits(n)))); nCharles R Greathouse IV, Oct 17 2018

Extensions

Name edited and offset corrected by Charles R Greathouse IV, Oct 17 2018
Showing 1-2 of 2 results.