cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A050699 Nonprime numbers n such that n and n-reversed (<> n and no leading zeros) have the same number of prime factors (counted with multiplicity).

Original entry on oeis.org

15, 26, 39, 49, 51, 58, 62, 85, 93, 94, 115, 117, 122, 123, 126, 129, 143, 147, 155, 158, 159, 165, 169, 177, 178, 183, 185, 187, 203, 205, 221, 225, 226, 244, 246, 265, 285, 286, 289, 294, 302, 314, 315, 319, 321, 326, 327, 329, 335, 338, 339, 341, 355, 366
Offset: 1

Views

Author

Patrick De Geest, Aug 15 1999

Keywords

Examples

			E.g., 321 = 3*107 and 123 = 3*41 -> both 321 and 123 have two prime factors.
		

Crossrefs

Programs

  • Maple
    with(numtheory): read(transforms): for n from 12 to 366 do r:=digrev(n): if(not isprime(n) and not n=r and not n mod 10 = 0 and bigomega(n)=bigomega(r))then printf("%d, ", n); fi: od: # Nathaniel Johnston, Jun 23 2011
  • Mathematica
    nrnQ[n_]:=Module[{idn=IntegerDigits[n],rev},rev=Reverse[idn];!PrimeQ[n] &&First[rev]!=0&&idn!=rev&&PrimeOmega[n]==PrimeOmega[FromDigits[rev]]]; Select[Range[400],nrnQ] (* Harvey P. Dale, Jun 23 2011 *)

Extensions

Definition clarified by Harvey P. Dale, Jun 23 2011

A050701 If composite k and its reverse are different and have same number of prime factors, then the larger of them is a term of the sequence.

Original entry on oeis.org

51, 62, 85, 93, 94, 221, 302, 321, 341, 381, 413, 442, 492, 493, 502, 511, 513, 514, 522, 524, 533, 534, 551, 553, 561, 562, 574, 581, 582, 604, 605, 621, 622, 623, 642, 663, 682, 685, 705, 711, 723, 734, 741, 766, 771, 781, 794, 805, 814, 817
Offset: 1

Views

Author

Patrick De Geest, Aug 15 1999

Keywords

Examples

			a(n)=341 -> reverse(a(n)) = 143 gives the pair (143,341) of which only the larger value 341 is retained.
		

Crossrefs

Programs

  • Mathematica
    rev[n_]:=FromDigits[Reverse[IntegerDigits[n]]]; Select[Range[825],!PrimeQ[#]&&PrimeOmega[#]==PrimeOmega[x=rev[#]]&&#>x&] (* Jayanta Basu, May 31 2013 *)
  • PARI
    isok(m) = my(k=fromdigits(Vecrev(digits(m)))); (m%10) && !isprime(m) && (m>k) && (bigomega(k) == bigomega(m)); \\ Michel Marcus, Aug 18 2021

Extensions

Revised by Editors of OEIS, Oct 19 2019
Incorrect 394 and 523 removed and name clarified by Sean A. Irvine, Aug 17 2021

A373731 Semiprimes k such that the digit reversal of k is a semiprime > k.

Original entry on oeis.org

15, 26, 39, 49, 58, 115, 122, 123, 129, 143, 155, 158, 159, 169, 177, 178, 183, 185, 187, 203, 205, 226, 265, 289, 314, 319, 326, 327, 329, 335, 339, 355, 394, 398, 415, 437, 497, 538, 559, 586, 589, 629, 667, 718, 899, 1006, 1011, 1027, 1041, 1043, 1046, 1047, 1057, 1059, 1067, 1079, 1115, 1119
Offset: 1

Views

Author

Zak Seidov and Robert Israel, Jun 17 2024

Keywords

Examples

			a(3) = 39 is a term because 39 = 3*13 is a semiprime, its reversal 93 = 3*31 is a semiprime, and 93 > 39.
		

Crossrefs

Programs

  • Maple
    rev:= proc(n) local L,i;
      L:= convert(n,base,10);
      add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    filter:= proc(n) local r;
      r:= rev(n);
      r > n and numtheory:-bigomega(n) = 2 and numtheory:-bigomega(r) = 2
    end proc:
    select(filter, [$1..2000]);
  • Mathematica
    s = {}; Do[fd = FromDigits[Reverse[IntegerDigits[k]]]; If[{2, 2} ==PrimeOmega[{fd, k}] && fd > k, AppendTo[s, k]], {k, 1000}]; s
Showing 1-3 of 3 results.