cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050702 Nonprime numbers n such that n and n-reversed (<>n and no leading zeros) have the same number of prime factors and these prime factors (palindromes allowed here) are also reversals of each other.

Original entry on oeis.org

26, 39, 62, 93, 143, 169, 187, 226, 286, 339, 341, 622, 682, 781, 933, 961, 1089, 1177, 1243, 1313, 1469, 1573, 1717, 2042, 2062, 2066, 2178, 2206, 2402, 2426, 2446, 2462, 2486, 2602, 2626, 2642, 3063, 3093, 3099, 3131, 3309, 3421, 3603, 3639, 3669, 3693, 3737, 3751, 3903, 3939, 3963, 4084
Offset: 1

Views

Author

Patrick De Geest, Aug 15 1999

Keywords

Comments

Prime factors counted without multiplicity. - Harvey P. Dale, Nov 29 2014

Examples

			Reversing 339 = 3*113 gives 933 = 3*311, both with two prime factors.
		

Crossrefs

Cf. A050699.

Programs

  • Mathematica
    d[n_]:=IntegerDigits[n]; f[n_]:=First/@FactorInteger[n]; Select[Range[4100],!PrimeQ[#]&&Reverse/@d[f[#]]==d[f[x=FromDigits[Reverse[d[#]]]]]&&#!=x&](* Jayanta Basu, May 31 2013 *)
    snpfQ[n_]:=Module[{pfn=Transpose[FactorInteger[n]][[1]],idn = IntegerDigits[ n], revn, pfrev, revpfrev},revn = FromDigits[ Reverse[idn]];pfrev=Transpose[ FactorInteger[ revn]][[1]]; revpfrev =FromDigits[Reverse[IntegerDigits[#]]]&/@pfrev;!PrimeQ[n]&& Last[ IntegerDigits[ n]] != 0&&revn!=n&&Length[pfn]==Length[pfrev]&&Union[pfn] == Union[ revpfrev]]; Select[ Range[ 4200], snpfQ] (* Harvey P. Dale, Nov 29 2014 *)

Extensions

More terms from Naohiro Nomoto, Apr 03 2001
Corrected by Vincenzo Librandi, Feb 03 2014
Definition clarified by Harvey P. Dale, Nov 29 2014