A050702 Nonprime numbers n such that n and n-reversed (<>n and no leading zeros) have the same number of prime factors and these prime factors (palindromes allowed here) are also reversals of each other.
26, 39, 62, 93, 143, 169, 187, 226, 286, 339, 341, 622, 682, 781, 933, 961, 1089, 1177, 1243, 1313, 1469, 1573, 1717, 2042, 2062, 2066, 2178, 2206, 2402, 2426, 2446, 2462, 2486, 2602, 2626, 2642, 3063, 3093, 3099, 3131, 3309, 3421, 3603, 3639, 3669, 3693, 3737, 3751, 3903, 3939, 3963, 4084
Offset: 1
Examples
Reversing 339 = 3*113 gives 933 = 3*311, both with two prime factors.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000 (corrected by Sean A. Irvine)
Crossrefs
Cf. A050699.
Programs
-
Mathematica
d[n_]:=IntegerDigits[n]; f[n_]:=First/@FactorInteger[n]; Select[Range[4100],!PrimeQ[#]&&Reverse/@d[f[#]]==d[f[x=FromDigits[Reverse[d[#]]]]]&!=x&](* Jayanta Basu, May 31 2013 *) snpfQ[n_]:=Module[{pfn=Transpose[FactorInteger[n]][[1]],idn = IntegerDigits[ n], revn, pfrev, revpfrev},revn = FromDigits[ Reverse[idn]];pfrev=Transpose[ FactorInteger[ revn]][[1]]; revpfrev =FromDigits[Reverse[IntegerDigits[#]]]&/@pfrev;!PrimeQ[n]&& Last[ IntegerDigits[ n]] != 0&&revn!=n&&Length[pfn]==Length[pfrev]&&Union[pfn] == Union[ revpfrev]]; Select[ Range[ 4200], snpfQ] (* Harvey P. Dale, Nov 29 2014 *)
Extensions
More terms from Naohiro Nomoto, Apr 03 2001
Corrected by Vincenzo Librandi, Feb 03 2014
Definition clarified by Harvey P. Dale, Nov 29 2014
Comments