A050792 Consider the Diophantine equation x^3 + y^3 = z^3 + 1 (1 < x < y < z) or 'Fermat near misses'. Arrange solutions by increasing values of z (see A050791). Sequence gives values of x.
9, 64, 73, 135, 334, 244, 368, 1033, 1010, 577, 3097, 3753, 1126, 4083, 5856, 3987, 1945, 11161, 13294, 3088, 10876, 16617, 4609, 27238, 5700, 27784, 11767, 26914, 38305, 6562, 49193, 27835, 35131, 7364, 65601, 50313, 9001, 11980, 39892, 20848
Offset: 1
Keywords
Examples
577^3 + 2304^3 = 2316^3 + 1.
References
- Mark A. Herkommer, Number Theory, A Programmer's Guide, McGraw-Hill, NY, 1999, page 370.
- Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.
Links
- Lewis Mammel, Table of n, a(n) for n = 1..368
- Eric Weisstein's World of Mathematics, Diophantine Equation - 3rd Powers
Extensions
More terms from Michel ten Voorde.
Extended through 26914 by Jud McCranie, Dec 25 2000
More terms from Don Reble, Nov 29 2001
Edited by N. J. A. Sloane, May 08 2007
Comments