A050811 Partition numbers rounded to nearest integer given by the Hardy-Ramanujan approximate formula.
2, 3, 4, 6, 9, 13, 18, 26, 35, 48, 65, 87, 115, 152, 199, 258, 333, 427, 545, 692, 875, 1102, 1381, 1725, 2145, 2659, 3285, 4046, 4967, 6080, 7423, 9037, 10974, 13293, 16065, 19370, 23304, 27977, 33519, 40080, 47833, 56981, 67757, 80431, 95316
Offset: 1
References
- John H. Conway and Richard K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 95.
Links
- Dr. Math, Partitioning the Integers
- Dr. Math, Partitioning an Integer
- D. Rusin, Additive Partitions of Number
- F. Ruskey, Generate Numerical Partitions
- Eric Weisstein's World of Mathematics, Partition Function P
- OEIS Wiki, Partition function
Programs
-
Maple
A050811:=n->round(exp(Pi*sqrt(2*n/3))/(4*n*sqrt(3))): seq(A050811(n), n=1..70); # Wesley Ivan Hurt, Sep 11 2015
-
Mathematica
f[n_] := Round[ E^(Sqrt[2n/3] Pi)/(4Sqrt[3] n)]; Array[f, 45] (* Alonso del Arte, May 21 2011, corrected by Robert G. Wilson v, Sep 11 2015 *)
-
PARI
a(n)=round(exp(Pi*sqrt(2*n/3))/(4*n*sqrt(3))) \\ Charles R Greathouse IV, May 01 2012
-
UBASIC
input N:print round(#e^(pi(1)*sqrt(2*N/3))/(4*N*sqrt(3)))
Formula
a(n) = round(exp(Pi*sqrt(2*n/3))/(4*n*sqrt(3))). - Alonso del Arte, May 21 2011
a(n) - A000041(n) ~ (1/Pi + Pi/72) * exp(sqrt(2*n/3)*Pi) / (4*sqrt(2)*n^(3/2)) * (1 - (9 + Pi^2/48)*Pi/((72 + Pi^2)*sqrt(6*n))). - Vaclav Kotesovec, Apr 03 2017
Extensions
a(1) = 1 replaced by 2, a(2) = 2 replaced by 3. - Alonso del Arte, D. S. McNeil, Aug 07 2011
Comments