cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050811 Partition numbers rounded to nearest integer given by the Hardy-Ramanujan approximate formula.

Original entry on oeis.org

2, 3, 4, 6, 9, 13, 18, 26, 35, 48, 65, 87, 115, 152, 199, 258, 333, 427, 545, 692, 875, 1102, 1381, 1725, 2145, 2659, 3285, 4046, 4967, 6080, 7423, 9037, 10974, 13293, 16065, 19370, 23304, 27977, 33519, 40080, 47833, 56981, 67757, 80431, 95316
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1999

Keywords

Comments

The mounting error seems to be approximately A035949(n-3), n >= 4. - Alonso del Arte, Jul 28 2011
This conjecture is false, for correct approximation see the formula below. - Vaclav Kotesovec, Apr 03 2017

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 95.

Crossrefs

Programs

  • Maple
    A050811:=n->round(exp(Pi*sqrt(2*n/3))/(4*n*sqrt(3))): seq(A050811(n), n=1..70); # Wesley Ivan Hurt, Sep 11 2015
  • Mathematica
    f[n_] := Round[ E^(Sqrt[2n/3] Pi)/(4Sqrt[3] n)]; Array[f, 45] (* Alonso del Arte, May 21 2011, corrected by Robert G. Wilson v, Sep 11 2015 *)
  • PARI
    a(n)=round(exp(Pi*sqrt(2*n/3))/(4*n*sqrt(3))) \\ Charles R Greathouse IV, May 01 2012
  • UBASIC
    input N:print round(#e^(pi(1)*sqrt(2*N/3))/(4*N*sqrt(3)))
    

Formula

a(n) = round(exp(Pi*sqrt(2*n/3))/(4*n*sqrt(3))). - Alonso del Arte, May 21 2011
a(n) - A000041(n) ~ (1/Pi + Pi/72) * exp(sqrt(2*n/3)*Pi) / (4*sqrt(2)*n^(3/2)) * (1 - (9 + Pi^2/48)*Pi/((72 + Pi^2)*sqrt(6*n))). - Vaclav Kotesovec, Apr 03 2017

Extensions

a(1) = 1 replaced by 2, a(2) = 2 replaced by 3. - Alonso del Arte, D. S. McNeil, Aug 07 2011