A050982 5-idempotent numbers.
1, 30, 525, 7000, 78750, 787500, 7218750, 61875000, 502734375, 3910156250, 29326171875, 213281250000, 1510742187500, 10458984375000, 70971679687500, 473144531250000, 3105010986328125, 20091247558593750, 128360748291015625, 810699462890625000
Offset: 5
References
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 5..1000
- Eric Weisstein's World of Mathematics, Idempotent Number.
- Index entries for linear recurrences with constant coefficients, signature (30,-375,2500,-9375,18750,-15625).
Crossrefs
Programs
-
Magma
[Binomial(n, 5)*5^(n-5): n in [5..25]]; // Vincenzo Librandi, Aug 12 2017
-
Maple
seq(binomial(n, 5)*5^(n-5), n=5..32); # Zerinvary Lajos, Jun 16 2008
-
Mathematica
CoefficientList[Series[1 / (1 - 5 x)^6, {x, 0, 33}], x] (* Vincenzo Librandi, Aug 12 2017 *)
-
PARI
a(n)=binomial(n, 5)*5^(n-5) \\ Charles R Greathouse IV, Sep 03 2011
Formula
a(n) = C(n, 5)*5^(n-5).
G.f.: x^5/(1-5*x)^6. - Zerinvary Lajos, Aug 06 2008
From Amiram Eldar, Apr 17 2022: (Start)
Sum_{n>=5} 1/a(n) = 6400*log(5/4) - 17125/12.
Sum_{n>=5} (-1)^(n+1)/a(n) = 32400*log(6/5) - 23625/4. (End)
Comments