A051014 Number of nondividing sets on {1,2,...,n}.
1, 2, 3, 5, 7, 11, 14, 21, 27, 38, 52, 73, 90, 123, 159, 211, 263, 344, 413, 535, 658, 832, 1026, 1276, 1499, 1846, 2226, 2708, 3229, 3912, 4592, 5541, 6495, 7795, 9207, 10908, 12547, 14852, 17358, 20493, 23709, 27744, 31921, 37250, 43013, 49936, 57319, 66318
Offset: 0
Examples
a(5) = 11 because there are 11 nondividing subsets of {1,2,3,4,5}: {}, {1}, {2}, {3}, {4}, {5}, {2,3}, {2,5}, {3,4}, {3,5}, {4,5}. a(7) = 21: {}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {2,3}, {2,5}, {2,7}, {3,4}, {3,5}, {3,7}, {4,5}, {4,6}, {4,7}, {5,6}, {5,7}, {6,7}, {4,6,7}.
Links
- Eric Weisstein's World of Mathematics, Nondividing Set
Programs
-
Maple
sums:= proc(s) option remember; local i, m; m:= max(s[]); `if`(m<1, {}, {m, seq([i,i+m][], i=sums(s minus {m}))}) end: b:= proc(i,s) option remember; local j, ok, t, si; if i<2 then 1 else si:= s union {i}; ok:= true; for j in sums(si) while ok do for t in si while ok do if irem(j, t)=0 and t<>j then ok:= false fi od od; b(i-1,s) +`if`(ok, b(i-1, si), 0) fi end: a:= n-> `if`(n=0, 1, 1+b(n, {})): seq(a(n), n=0..25); # Alois P. Heinz, Mar 08 2011
-
Mathematica
sums[s_] := sums[s] = Module[{m=Max[s]}, If[m<1, {}, Join[{m}, Sequence@@Table[{i,i+m}, {i,sums[DeleteCases[s,m]]}]]] ]; b[i_,s_] := b[i,s] = Module[{ ok,si,sij,sik}, If[ i<2, 1, si = Union[s,{i}]; ok = True; For[j=1, j <= Length[sums[si]] && ok, j++, sij = sums[si][[j]]; For[k=1, k <= Length[si] && ok, k++, If[Divisible[sij,sik=si[[k]]]&&sij!=sik,ok=False]]]; b[i-1, s] + If[ok, b[i-1,si],0] ] ]; a[n_] := a[n] = If[n==0, 1, 1+b[n, {}]]; Table[ Print[ a[n] ]; a[n], {n,0,47}] (* Jean-François Alcover, Oct 10 2012, after Alois P. Heinz *)
Extensions
More terms from David Wasserman, Feb 15 2002
a(41)-a(47) from Alois P. Heinz, Mar 08 2011
Comments